

BSR/ASHRAE Standard 231P

_____________________Public Review Draft

A Control Description Language
for Building Environmental Control

Sequences

Second Public Review Draft (June 2025)

(Complete Draft for Full Review)

This draft has been recommended for public review by the responsible project committee. To submit a comment on
this proposed standard, go to the ASHRAE website at www.ashrae.org/standards-research--technology/public-review-
drafts and access the online comment database. The draft is subject to modification until it is approved for publication
by the Board of Directors and ANSI. Until this time, the current edition of the standard (as modified by any published
addenda on the ASHRAE website) remains in effect. The current edition of any standard may be purchased from the
ASHRAE Online Store at www.ashrae.org/bookstore or by calling 404-636-8400 or 1-800-727-4723 (for orders in the
U.S. or Canada).

The appearance of any technical data or editorial material in this public review document does not constitute endorse-
ment, warranty, or guaranty by ASHRAE of any product, service, process, procedure, or design, and ASHARE ex-
pressly disclaims such.

© 2025 ASHRAE. This draft is covered under ASHRAE copyright. Permission to reproduce or redistribute all or any
part of this document must be obtained from the ASHRAE Manager of Standards, 180 Technology Parkway, Peachtree
Corners, GA 30092. Phone: 404-636-8400, Ext. 1125. Fax: 404-321-5478. E-mail: standards.section@ashrae.org.

ASHRAE, 180 Technology Parkway, Peachtree Corners GA 30092

http://www.ashrae.org/standards-research--technology/public-review-drafts
http://www.ashrae.org/standards-research--technology/public-review-drafts
http://www.ashrae.org/bookstore
mailto:standards.section@ashrae.org

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

 TABLE OF CONTENTS

1 PURPOSE .. 2

2 SCOPE ... 2

3 DEFINITIONS ... 2

3.1 Definitions ... 2

4 HOW TO USE THIS DOCUMENT .. 3

5 CONTROL DESCRIPTION LANGUAGE ... 3

5.1 Basic Elements of CDL ... 3
5.2 Syntax .. 4
5.3 Units... 4
5.4 Permissible Data Types ... 5
5.5 Encapsulation of Functionality .. 8
5.6 Elementary Blocks ... 9
5.7 Connectors ... 9
5.8 Composite Blocks .. 10
5.9 Extension Blocks ... 22
5.10 Replaceable Blocks .. 23
5.11 Extension of a Composite Block ... 25
5.12 Model of Computation... 26
5.13 Metadata .. 27

6 CONTROL EXCHANGE FORMAT (CXF) ... 34

7 ELEMENTARY BLOCKS .. 39

7.1 Introduction ... 39
7.2 Specifying Elementary Blocks .. 39
7.3 Symbols ... 40
7.4 Elementary Blocks ... 41
7.5 Elementary Block Descriptions ... 49
7.6 Predefined constants .. 156
7.7 Predefined enumerations ... 157

8 APPENDIXES ... 160

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

1

(This foreword is not part of this standard. It is merely informative and does not contain
requirements necessary for conformance to the standard. It has not been processed accord-
ing to the ANSI requirements for a standard and may contain material that has not been
subject to public review or a consensus process. Unresolved objectors on informative mate-
rial are not offered the right to appeal at ASHRAE or ANSI.)

Foreword

The goal of this standard is to define and document a standard interchange format for the control
logic to be used in control systems. Note that this standard is complementary and tightly connected
to other work being developed in ASHRAE controls standards and guidelines. For example,
ASHRAE Guideline 36 defines best practices for high performance sequences, while Guideline 13
defines how to develop a control specification. ASHRAE Standard 135 (BACnet) defines a proto-
col for controls communication, while proposed Standard 223P defines a methodology for seman-
tic modeling. The intent is that this standard will be coordinated to work with the other ASHRAE
standards and guidelines. Note that there is associated project work being done by the US De-
partment of Energy’s National Laboratories that is developing tools and control sequence librar-
ies based on this standard. See the appendix B for more details of these efforts.

CDL is expected to be applied to these applications:

• Guideline 36: Sequences of operation (SOOs) in Guideline 36 are currently written only
in English. This format is mandatory for human understanding of the SOOs, but the lan-
guage is inherently imprecise and ambiguous. This has led to inconsistent implementation
of the SOOs. Writing the SOOs in CDL will eliminate these issues.

• Simulation. CDL can be used to simulate control sequences using Spawn of EnergyPlus
(SOEP), or any other tool that supports the open Modelica standard, allowing designers
to determine the energy efficiency effectiveness and to fine tune the logic. This could also
be used to demonstrate the effectiveness of Guideline 36 SOOs for a given application.

• Control System Manufacturer Programming. Manufacturers of digital control systems
could create translators that convert CDL to their proprietary programming language,
allowing fast and reliable ways to convert CDL developed by and for Guideline 36 and
energy modelers referenced above. Eventually some manufacturers may change from their
proprietary programming language to CDL, just as they did with BACnet.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

2

1 PURPOSE

The purpose of this standard is to define a declarative graphical programming language for build-
ing environmental control sequences that are both human- and machine-readable designed for
specification, implementation through machine-to-machine translation, documentation, and simu-
lation.

2 SCOPE

This standard applies to building automation systems controlling environmental systems such as
mechanical systems, active facades, and lighting.

3 DEFINITIONS

3.1 Definitions

Term Definition
boolean a data type with two possible values (true/false, which can be interpreted as

open/close, or on/off).
composite block a collection of any number of elementary blocks and other composite

blocks, inputs, outputs, and connectors.
Informative note: Composite blocks are a valuable tool to allow for con-
sistent re-use of logic.

Control Descrip-
tion Language
(CDL)

an interchange format for control sequence logic using a subset of the
Modelica modeling language intended to be used for control sequence def-
inition and allows for use in modeling and simulation as well as for use in
commercially available control systems, or to be translated to CXF. In-
formative note: See Section 5.0 for more details.

constant value that does not change.
control logic functional description which determines how outputs are assigned based on

given inputs, parameters, and state variables. Control logic is the digital
implementation of what is specified in the control sequence.

control sequence English language description that is used to specify the control logic. Con-
trol sequences are typically developed by HVAC / Control system design-
ers.

Control Ex-
change Format
(CXF)

CDL encoded in a JSON-LD format intended to be used as a
syntax to represent CDL information for import by control system provid-
ers using translators; and to exchange control logic between control sys-
tems.
Informative Note: See Section 6.0 for more details.

elementary block mathematical function, including specification of the data types of its in-
puts, outputs, and parameters.
Informative Note: See Section 7.0 for more details.

extension block elementary blocks beyond those defined in this standard, including inputs,
outputs, and parameters, defined in a manner that is interoperable with this
standard.
Informative Note: See Section 5.0 for more details

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

3

integer refers to a data type of whole values (e.g.-1, 0, 1, 2….)
Java Script Ob-
ject Notation
(JSON)

a standard text-based data exchange format.
Informative note: See json.org.

Modelica a modeling language governed by the Modelica Association.
Informative note: See modelica.org.

parameter a variable whose value is not changed dynamically by the control logic.

proprietary func-
tion (system
functions)

logic that provides functions not defined in this standard, such as optimal
start, scheduling, and alarming.

real a data type of continuous values.
simulation a virtual representation of a real-world system.

4 HOW TO USE THIS DOCUMENT

This document consists of three primary technical sections. These include:

• Section 5: Control Description Language (CDL). This section contains all the defini-
tions of CDL which is a subset of the Modelica modeling language.

• Section 6: Control eXchange Format (CXF). This section has the details of how the
JSON definition for control logic is expressed.

• Section 7: Elementary Blocks. This contains all the definitions for the elementary func-
tion blocks defined in the standard.

More details about the concept and structure of CDL and CXF can be found in Informative Ap-
pendix A.

5 CONTROL DESCRIPTION LANGUAGE

CDL defines the syntax for implementing the logic and documentation of a control logic. CDL is
used for the control logic design, as well as for control logic simulation. Commercially available
control system tools used for control logic programming shall be able to import and export logic
using either CDL or CXF.

Informative note: CDL is defined using a subset of a modeling language called Modelica. The use
of Modelica allows the use of open source and commercially available tools that can be utilized
to simulate both the control logic (as represented in CDL) as well as the corresponding mechanical
system (represented in Modelica).

5.1 Basic Elements of CDL

CDL consists of the following elements:

• Elementary Blocks (defined in Section 7.0 of this standard).

http://json.org/
http://modelica.org/

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

4

• Connectors through which these blocks receive input values and make accessible output
values.

• Permissible data types.
• Syntax to specify:

o how to instantiate blocks and assign values to parameters.
o how to connect inputs of blocks to outputs of other blocks.
o how to document blocks.
o how to add annotations.
o how a group of blocks and connectors can be used to define a Composite Block.
o how to support new (extension) blocks that are not part of this standard.

• A model of computation that describes when blocks are executed and when outputs are
assigned to inputs.

5.2 Syntax

Informative note: CDL is defined using a subset of the modeling language Modelica. The use of
Modelica allows users to view, modify, and simulate CDL-conformant control logic with any Mod-
elica-compliant tool. One constraint with the use of Modelica is that certain terms are defined or
reserved.

The following Modelica keywords are not supported in CDL:

• inner and outer for instance hierarchy lookup
• break for component deselection

The following Modelica language features are not supported in CDL:
• clocks for clocked state machine
• algorithm sections to express sequences of statements
• initial equation and initial algorithm sections for system initialization

5.3 Units

CDL shall use a specific set of SI units as designated in the table below. If necessary, tools shall
convert these units to display user-selected units:

Table 5-1: Units in CDL

Measurement CDL units
Area m2
Electric or Thermal Energy Use J
Flow Mass kg/s
Flow Volume m3/s
Heat Flow Rate (boiler, chiller, etc.) W
Power (chillers, fans, pumps, etc.) W
Pressure (air, water, etc.) Pa
Relative Humidity Ratio between 0 and 1

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

5

Specific Enthalpy J/kg
Static Pressure (water) Pa
Temperature K
Time s
Velocity m/s

5.4 Permissible Data Types

5.4.1 Data Types

Informative note: CDL is limited to a specific set of supported data types. Note that CXF has a
broader range of data types that are supported. The data types in CDL utilize a subset of the
parameters defined in Modelica. Only the parameters that are translated to CXF are included in
this standard.

5.4.1.1 Real Type

The following defines the Real type:

Type Real // Note: Defined with Modelica syntax although predefined
 RealType value; // Accessed without dot-notation
 parameter StringType quantity = "";
 parameter StringType unit = "" "Unit used in equations";
 parameter StringType displayUnit = "" "Default display unit";
 parameter RealType min=-Inf, max=+Inf; // Inf denotes a large Value
 parameter RealType nominal = 1; // Nominal value, for error control
 parameter BooleanType unbounded = false; // For error control

Real Type/double shall follow IEC 60559:1989 (ANSI/IEEE 754-1985) double format.

Attribute Descriptions:

• quantity: The quantity attribute is optional, can take on the following values:
o "", which is the default, is considered as no quantity being specified.
o Angle for area (such as used for sun position).
o Area for area.
o Energy for energy.
o Frequency for frequency.
o Illuminance for illuminance.
o Irradiance for solar irradiance.
o MassFlowRate for mass flow rate.
o MassFraction for mass fraction.
o Power for power.
o PowerFactor for power factor.
o Pressure for absolute pressure.
o PressureDifference for pressure difference.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

6

o SpecificEnergy for specific energy.
o TemperatureDifference for temperature difference.
o Time for time.
o ThermodynamicTemperature for absolute temperature.
o Velocity for velocity.
o VolumeFlowRate for volume flow rate.
o Current for electrical current (such as the chiller demand).
o ThermalRampRateTime for thermal ramp rate by time.
o ThermalRampRateTemperature for thermal ramp rate by temperature.

• unit: The units for the data value that are utilized in CDL. In CDL, engineering units are

pre-defined to follow SI standards – see Section 5.3 for details.

• displayUnit: It is used to show the localized value for how to display units to the user.
Informative note: It is up to the user to specify which unit to be shown. As an example, for
a project in the US, temperatures are often shown in degrees F, so a displayUnit value of
degF would be used. Tools that implement CDL may convert the value from unit to dis-
playUnit before showing it in a GUI or a log file.

• nominal: This attribute is used for scaling purposes and to define tolerances.

• unbounded: This attribute is used by solvers for integrating quantities that can grow

over multiple orders of magnitude.

5.4.1.2 Integer Type

The following defines the Integer type:

type Integer // Note: Defined with Modelica syntax although predefined
 IntegerType value; // Accessed without dot-notation
 parameter IntegerType min=-Inf, max=+Inf;
end Integer;

The minimal number range for IntegerType shall be from -2147483648 to +2147483647, cor-
responding to a two’s-complement 32-bit integer implementation.

The Integer data type shall not include units.

5.4.1.3 Boolean Type

The following defines the Boolean type:
type Boolean // Note: Defined with Modelica syntax although predefined
 BooleanType value; // Accessed without dot-notation
end Boolean;

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

7

5.4.1.4 String Type

The following defines the String type:

type String // Note: Defined with Modelica syntax although predefined
 StringType value; // Accessed without dot-notation
end String;

5.4.1.5 Enumeration Type

A declaration of the form
type E = enumeration([enumList]);

defines an enumeration type E and the associated enumeration literals of the enumList. The
enumeration literals shall be distinct within the enumeration type. The names of the enumeration
literals are defined inside the scope of E. Each enumeration literal in the enumList has type E.
Informative note: For example:
 type SimpleController = enumeration(P, PI, PD, PID);
 parameter SimpleController = SimpleController.P;

An optional comment string can be specified with each enumeration literal.

Informative note: For example:
 type SimpleController = enumeration(
 P "P controller",
 PI "PI controller",
 PD "PD controller",
 PID "PID controller")
 "Enumeration defining P, PI, PD, or PID simple controller type";

5.4.2 Parameter and Constant Declarations

Informative note: A parameter is an exposed value that is used to configure an Elementary, Com-
posite, or Extension Block. These values are set by the user when setting up the sequence. The
value of a parameter cannot be changed through an input connector. Parameters are values that
do not depend on time; however, their values can be changed during run-time through a user
interaction with the control program (such as to change a control gain), unless a parameter is
a structural parameter. A constant is a value that is fixed at compilation time.

Parameters shall be declared with the parameter prefix.

Informative note: For example, to declare a proportional gain, use
parameter Real k(min=0) = 1 “Proportional gain of controller”;

Constants are declared with the constant prefix.

Informative note: For example,
constant Real pi = 3.14159;

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

8

To avoid that the value of a parameter or constant may be changed when instantiating a
block, the final keyword shall be prepended to the parameter or constant declaration.

Informative note: For example, in Composite Blocks, a library implementer may want to avoid
that the user changes certain parameter values.

5.4.3 Arrays

Array indices shall be of type Integer only. The first element of an array has index 1. An array of
size 0 is an empty array.

Values of arrays shall be declared using one of the approaches below:

• the notation {x1, x2, ...}
• one or several iterators
• a fill or cat function

Informative note: Arrays may be used, for example, in the creation of libraries so that the logic is
applicable to any number of chillers. Not all control systems support arrays, and it is possible to
flatten them when rendered in CXF. Each of these data types, including Elementary Blocks, Com-
posite Blocks, Extension Blocks, and Connectors can be a single instance, one-dimensional array
or n-dimensional array (matrix).

For example, the following declarations all assign the array {1, 2, 3} to parameters:

parameter Real k1[3] = {1, 2, 3};
parameter Real k2[3] = {i for i in 1:3};
parameter Real k3[3] = k1;
parameter Real k4[3] = fill(1, 3) + {0, 1, 2};
parameter Real k5[3] = cat(1, {1}, {2}, {3});

The following declaration instantiates two blocks and sets the value of the parameter k to 2 and 3:
MultiplyByParameter mul[2](k={2, 3});

Notes::

• The use of arrays is beneficial in defining a control logic if it acts on any number of equip-
ment (such as on any number of chillers, and the number is only known when the sequence
is used for a specific project).

• Many control systems do not support arrays.
• The size of arrays will be fixed at translation. It cannot be changed during run-time.
• Enumeration or Boolean data types are not permitted as array indices.

5.5 Encapsulation of Functionality

All computations shall be encapsulated in a block. Blocks expose parameters for configuring the
block and expose inputs and outputs using connectors.

Informative note: Blocks are either Elementary Blocks, Composite Blocks, or Extension Blocks.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

9

5.6 Elementary Blocks

Section 7.0 defines a set of Elementary Blocks. Elementary blocks must be used as defined and
cannot be modified.

Informative note: Elementary Blocks along with inputs, outputs, and connectors, and along with
other Composite or Extension Blocks, are used to compose control logic.

For example: A tool that is CDL compliant and implements the elementary function AddParame-
ter may implement it as:

block AddParameter "Output the sum of an input plus a parameter"
 parameter Real p "Value to be added";
 CDL.Interfaces.RealInput u "Connector of Real input signal";
 CDL.Interfaces.RealOutput y "Connector of Real output signal";
equation
 y = u + p;
annotation(Documentation(info("
 <html>
 <p>
 Block that outputs <code>y = u + p</code>,
 where <code>p</code> is parameter and <code>u</code> is an input.
 </p>
 </html>"));
end AddParameter;

5.7 Connectors

Elementary Blocks, Composite Blocks, and Extension Blocks expose their inputs and outputs
through input and output connectors.

The permissible connectors are stored in the CDL library in the package CDL.Interfaces and
they are BooleanInput, BooleanOutput, IntegerInput, IntegerOutput,
RealInput, and RealOutput. Connectors do not carry Enumeration and String data.

Connectors must not be in a protected section.

Connectors carry scalar variables, vectors, or arrays of values each of which has the same data
type. For arrays, the connectors must be explicitly declared as an array.

Informative note: For example, to declare an array of nin input signals, use
 parameter Integer nin(min=1) "Number of inputs";
 CDL.Interfaces.RealInput u[nin] "Connector for 2 Real input signals";

Many building control product tools only support scalar variables on graphical connections. This
leads to the situation that different control logics need to be implemented for any combination of
equipment. For example, if only scalars are allowed in connections, then a chiller plant with two
chillers needs a different sequence than a chiller plant with three chillers. With vectors, however,
one sequence can be implemented for chiller plants with any number of chillers.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

10

If control product tools do not support vectors on connections, then during translation from CDL
to CXF, the vectors (or arrays) can be flattened, e.g., the arrays are converted to scalars. For
example, blocks of the form
 parameter Integer n = 2 "Number of blocks";
 CDL.Reals.Sources.Constant con[n](k={1, 2});
 CDL.Reals.MultiSum mulSum(nin=n); // multiSum that contains an input con-
nector u[nin]
 equation
 connect(con.y, mulSum.u);
could be translated to the equivalent of
 CDL.Reals.Sources.Constant con_1(k=1);
 CDL.Reals.Sources.Constant con_2(k=1);
 CDL.Reals.MultiSum mulSum(nin=2);
 equation
 connect(con_1.y, mulSum.u_1);
 connect(con_2.y, mulSum.u_2);

E.g., two instances of CDL.Reals.Sources.Constant are used, the vectorized input
mulSum.u[2] is flattened to two inputs, and two separate connections are instantiated. This
will preserve the control logic, but the components will need to be graphically rearranged after
translation.

5.8 Composite Blocks

CDL defines composition rules that instantiate parameters, inputs, outputs, and other blocks, and
saves them as a Composite Block.

Informative note: A Composite Block could represent all the control logic used to control a device;
hence the Composite Block could be translated to a control product line; or it could be instantiated
in another Composite Block to compose a hierarchical control logic for a device. For example, a
control logic for an air handler unit may be a Composite Block that contains instances of Compo-
site Blocks for the freeze protection, for the heating coil, or for the cooling coil.

 Figure 5-1 shows a simple composite block.

Figure 5-1 Example of a composite control block that includes elementary blocks, an extension
block (Section 5.9), and a sub-composite block.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

11

5.8.1 Implementation of Composite Blocks
Composite Blocks are declared using the syntax:

 within PackageName;
 block BlockName “Description”
 …
 end BlockName;

PackageName is the name of the package in which the block is stored. The BlockName is the
user-selected name of the block. The “Description” is a one-line string. The three dots …
contains declarations that instantiate constants, parameters, Elementary Blocks, Composite
Blocks, and Extension Blocks followed by an equation section that contains the connect state-
ments and the annotation that provides the documentation of the Composite Block.

The Composite Block must be stored on the file system under the name of the Composite Block
with the file extension .mo, and with each package name being a directory. The name must be an
allowed Modelica class name (see https://specification.modelica.org/master/class-predefined-
types-and-declarations.html).

Informative note:
For example, if a user specifies a new Composite Block MyController.MyAdder, then it shall be
implemented as
within MyController;

 block MyAdder “Description”
 …
 end MyAdder;
 stored in the file MyController/MyAdder.mo on Linux or OS X, or MyController\MyAdder.mo
on Windows.

Composite Blocks may contain tens or hundreds of instances of other Composite Block, some of
them may be conducting such low-level operation that are of no interest to someone who uses the
Composite Block. Therefore, Composite Blocks allow instances of Elementary Blocks, Composite
Blocks, and Extension Blocks to be declared after a keyword called protected. If a simulation
program or a building automation system stores inputs and outputs of blocks, or makes their value
readable via a browser, then these protected instances should by default not be shown. The pro-
tected keyword is often used to avoid clutter in such browser that would distract the user and may
make it more time consuming to find relevant data; or that may lead to large output files or longer
computing times for no useful reason.

5.8.2 Equations
In Composite Blocks, after all instantiations, a keyword equation must be present to introduce
the equation section. The equation section can only contain connections and annotations. Unlike
in Modelica, an equation section shall not contain equations such as y=2*u; or commands
such as if, while and when.

There shall not be an initial equation, initial algorithm, or algorithm section.

https://specification.modelica.org/master/class-predefined-types-and-declarations.html
https://specification.modelica.org/master/class-predefined-types-and-declarations.html

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

12

5.8.3 Assigning of Values to Parameters
Informative note: Parameters are values used to configure Elementary Blocks, Composite Blocks,
and Extension Blocks. The values of parameters can be changed through a user interaction with
the control program (such as to change a control gain) unless a parameter is a structural param-
eter such as the size of an array, or unless a parameter is declared as final. Optionally, it is
also possible to assign the return value of a function to a parameter. For example, this can be used
when creating a library of sequences.

The declaration of parameters and their values follows conventions for Modelica but is limited to
the type of expressions that are allowed in such assignments. For Boolean parameters, only ex-
pressions involving and, or, and not and the functions in Table 5.1 are allowed. For Real and
Integer, expressions are allowed that involve:
• the basic arithmetic functions +, -, *, /,
• the relations >, >=, <, <=, ==, <>,
• calls to the functions listed in Table 5.1.

Table 5-2: Functions that are allowed in parameter assignments

Function Description
abs(v) Returns the absolute value of v.
sign(v) Returns if v>0 then 1 else if v<0 then –1 else 0.
sqrt(v) Returns the square root of v if v>=0, or an error otherwise.
div(x, y) Returns the algebraic quotient x/y with any fractional part discarded (also

known as truncation toward zero). [Note: this is defined for / in C99; in C89 the
result for negative numbers is implementation-defined, so the standard func-
tion div() must be used.]. Result and arguments must have type Real or Inte-
ger. If either of the arguments is Real, the result is Real; otherwise, it is Inte-
ger.

mod(x, y) Returns the integer modulus of x/y, i.e., mod(x,y)=x-floor(x/y)*y. Result
and arguments shall have type Real or Integer. If either of the arguments is
Real, the result is Real; otherwise, it is Integer.
Informative note: Examples are mod(3,1.4)=0.2, mod(-3,1.4)=1.2 and
mod(3,-1.4)=-1.2.

rem(x,y) Returns the integer remainder of x/y, such that div(x,y)*y + rem(x, y) =
x. Result and arguments shall have type Real or Integer. If either of the argu-
ments is Real, the result is Real; otherwise, it is Integer.
Informative note: Examples are rem(3,1.4)=0.2 and rem(-3,1.4)=-0.2.

ceil(x) Returns the smallest integer not less than x. Result and argument shall have
type Real.

floor(x) Returns the largest integer not greater than x. Result and argument shall have
type Real.

inte-
ger(x)

Returns the largest integer not greater than x. The argument shall have type
Real. The result has type Integer.

min(A) Returns the least element of array expression A.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

13

min(x, y) Returns the least element of the scalars x and y.
max(A) Returns the greatest element of array expression A.
max(x, y) Returns the greatest element of the scalars x and y.
sum(...) The expression sum(e(i, ..., j) for i in u, ..., j in v) returns the

sum of the expression e(i, ..., j) evaluated for all combinations of i in u,
..., j in v: e(u[1], ... ,v[1]) + e(u[2], ... ,v[1])+...
+e(u[end],... ,v[1])+...+e(u[end],... ,v[end]).
The type of sum(e(i, ..., j) for i in u, ..., j in v) is the same as
the type of e(i,...j).

fill(s,
n1, n2,
...)

Returns the 𝑛𝑛1 × 𝑛𝑛2 × 𝑛𝑛3 × … array with all elements equal to scalar or array ex-
pression s (𝑛𝑛𝑖𝑖 ≥ 0). The returned array has the same type as s.
Recursive definition: fill(s, n1, n2, n3, ...) = fill(fill(s, n2, n3,
...), n1);, fill(s,n)={s, s, ..., s}.
The function needs two or more arguments; that is fill(s) is not legal.

size(...) Returns dimensions of an array. For 1𝑒𝑒𝑒𝑒 ≤ 𝑛𝑛, where 𝑛𝑛 is the number of dimen-
sions in A, the expression size(A,i) returns the size of dimension 𝑒𝑒 of array ex-
pression A. The expression size(A) returns a vector of length 𝑛𝑛 containing the
dimension sizes of A.
Informative note: Examples are size([1, 2, 3; 3, -4, 5], 1)=2 and
size([1, 2, 3; 3, -4, 5])={2,3}.

cat(k, A,
B, C, …)

Returns an array that concatenates arrays A, B, C, … along dimension k, ac-
cording to the following rules:

• Arrays A, B, C, … must have the same number of dimensions,
• Arrays A, B, C, … must be type compatible expressions giving the

type of the elements of the results. The maximally expanded types
should be equivalent. Real and Integer subtypes can be mixed result-
ing in a Real result array where the Integer numbers have been trans-
formed to Real numbers.

• k has to characterize an existing dimension; k shall be an integer num-
ber.

• Size matching: Arrays A, B, C, ... must have identical array sizes with
the exception of the size of dimension k.

Informative note: For example, the following could be used to instantiate a gain and assign the
value -1 or 2 to its parameter k:

 CDL.Gain gai(k=-1) "Constant gain of -1" annotation(...);
 CDL.Gain doubleTheInput(final k=2) annotation(...);

where the documentation string is optional. Here we used the final keyword to avoid a user
changing the value of k. The annotation is typically used for the graphical positioning of the in-
stance in a block diagram.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

14

Using expressions in parameter assignments and propagating values of parameters in a hierar-
chical formulation of control logic are convenient language constructs to express relations be-
tween parameters and are invaluable in defining libraries of sequences. However, many commer-
cial control product lines do not support arrays or the propagation of parameter values and eval-
uation of expressions in parameter assignments.

To deal with this limitation, CDL can be represented for a specific instance that does not include
the propagated parameters and that evaluate expressions that involve parameters. See Figure 2
for the relationship between a library of sequences and a specific instance of a sequence.

5.8.4 Conditionally Removing Instances

CDL supports conditionally removing instances of blocks, inputs, and outputs and their connec-
tions. When an instance needs to be conditionally removed, an if clause must be used.

Informative note: For example, to have an implementation of a sequence that optionally includes
code to use an occupancy sensor, when available, or to remove the code when it is not provided.
An example code snippet is
 parameter Boolean have_occSen=false
 "Set to true if zones have occupancy sensor";
 CDL.Interfaces.IntegerInput nOcc if have_occSen
 "Number of occupants"
 annotation (__cdl(default = 0));
 CDL.Reals.MultiplyByParameter gai(k = VOutPerPer_flow)
 if have_occSen
 "Outdoor air per person";
 equation
 connect(nOcc, gai.u);

By the Modelica language definition, all connections to nOcc will be removed if have_occSen =
false.

Many control product tools may not support conditionally removing instances. Rather, these in-
stances are always present, and a value for the input must be present. To accommodate this, every
input connector that can be conditionally removed can declare a default value of the form
__cdl(default = value), where value is the default value that will be used if the building auto-
mation system does not support conditionally removing instances. The type of value must be the
same as the type of the connector. For Boolean connectors, the allowed values are true and
false.
If the __cdl(default = value) annotation is absent, then the following values are assumed as
default:

• For RealInput, the default values are:
o If unit=K: If quantity="TemperatureDifference", the default is 0 K, otherwise

it is 293.15 K.
o If unit=Pa: If quantity="PressureDifference", the default is 0 Pa, otherwise

it is 101325 Pa.
o For all other units, the default value is 0.

• For IntegerInput, the default value is 0.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

15

• For BooleanInput, the default value is false.

Note that output connectors must not have a specification of a default value because if a building
automation system cannot conditionally remove instances, then the block (or input connector) up-
stream of the output will always be present (or will have a default value).

5.8.5 Points lists

Points lists documentation is supported within a CDL-conforming sequences. This is an optional
function. Tools do not have to support it. When it is utilized, it must not cause errors in the tool.

For point lists,

• the connectors RealInput and IntegerInput are analog inputs if translated to CXF.
• the connectors RealOutput and IntegerOutput are analog outputs if translated to CXF.
• the connectors BooleanInput and BooleanOutput are digital inputs and outputs.

5.8.5.1 Annotations that Cause Point Lists to be Generated

To enable generation of point lists, annotations that are written as __cdl(…) must be used. The
annotation
__cdl(generatePointlist=Boolean, controlledDevice=String);
at the class level specifies that a point list of the sequence is generated. If not specified, it is as-
sumed that __cdl(generatePointlist=false). The key controlledDevice is optional. It is
used to list the device that is being controlled. Its value will be written to the point list, but not
used otherwise.
When instantiating an Elementary Block, a Composite Block, or an Extension Block, with the
annotation __cdl(generatePointlist=Boolean)being added to the instantiation clause, the an-
notation will override the class level declaration.

Informative note: For example,
 block A
 MyController con1;
 MyController con2 annotation(__cdl(generatePointlist=false));
 annotation(__cdl(generatePointlist=true));
 end A;
generates a point list for A.con1 only, while
 block A
 MyController con1;
 MyController con2 annotation(__cdl(generatePointlist=true));
 annotation(__cdl(generatePointlist=false));
 end A;
generates a point list for A.con2 only.

The generatePointlist annotation will be propagated down in an Elementary Block, a Compo-
site Block, or an Extension Block by specifying in the instantiation clause the annotation
__cdl(propagate(instance=String, generatePointlist=true));
Controllers deeper in the hierarchy are referred to using the dot notation.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

16

Informative note: For example, in instance="subCon1.subSubCon1" where subSubCon1 is an
instance of an Elementary or a Composite Block in subCon1.

The value of instance must be the name of an Elementary Block, a Composite Block, or an Ex-
tension Block. It must be declared. When the value is a conditionally removable block and is re-
moved, the declaration will be safely ignored. Higher-level declarations override lower-level dec-
larations.

Informative note: For example, assume con1 has a block called subCon1. Then, the declaration
MyController con1 annotation(__cdl(propagate(instance="subCon1", generate-
Pointlist=true)));
sets generatePointlist=true in the instance con1.subCon1.

It allows any number of propagate(...) annotations for a controller.

Informative note: Specifying multiple propagate(...) annotations is useful for composite con-
trollers. For example,
MyController con1 annotation(
 __cdl(
 propagate(instance="subCon1", generatePointlist=true),
 propagate(instance="subCon1.subSubCon1", generatePointlist=true),
 propagate(instance="subCon1.subSubCon2", generatePointlist=false)
)
);
allows a fine-grained propagation to individual blocks of a Composite Block.

5.8.5.2 Annotations for Connectors

For generating point lists, an annotation of the form for the Connectors
__cdl(connection(hardwired=Boolean));

specifies whether the connection is hardwired or not. If the annotation is not presented, the Con-
nector is not hardwired. The field hardwired has default value false.

An annotation of the form for the Connectors
__cdl(trend(interval=Real, enable=Boolean));
specifies if the Connector value is recommended to be trended and the interval to trend the value.
The field interval must be specified, and its value is the trending interval in seconds. The field
enable is optional, with default value of true, and it can be used to overwrite the value used in
the sequence declaration.

The connection annotation will be propagated down in an Elementary Block, a Composite Block,
or an Extension Block by specifying in the instantiation clause the annotation
__cdl(propagate(instance=String, connection(hardwired=Boolean)));

The trend annotation will be propagated down in an Elementary Block, a Composite Block or an
Extension Block by specifying in the instantiation clause the annotation
__cdl(propagate(instance=String, trend(interval=Real, enable=Boolean)));

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

17

To propagate both the connection and the trend annotations together for one connector, speci-
fying in the instantiation clause the annotation
__cdl(propagate(instance=String, connection(hardwired=Boolean), trend(inter-
val=Real, enable=Boolean)));

The value assigned to instance must be the instance name of a connector.

Informative note: If a Composite Block contains a Composite Block con1, which in turn contains
a block subCon1 that has an input u, the declaration
MyController con1 annotation(
 __cdl(propagate(instance=”subCon1.u”, connection(hardwired=Boolean)));
can be used to set the type of connection of input (or output) con1.subCon1.u.
Similarly, the declaration
MyController con1 annotation(
 __cdl(propagate(instance="subCon1.u", trend(interval=Real, enable=Bool-
ean)));
can be used to set how to trend that input (or output).
To combine the propagation, use the declaration
MyController con1 annotation(
 __cdl(propagate(instance="subCon1.u", connection(hardwired=Boolean),
trend(interval=Real, enable=Boolean)));

• The value assigned to instance must be the name of an instance that exist. If the instance
is removable and it is removed, the annotation will be safely ignored.

• The higher-level declarations override lower-level declarations, and
• The annotation allows any number of propagate(…) annotations.

Informative note:
For example, consider the pseudo-code
block Controller
 Interfaces.RealInput u1
 annotation(__cdl(connection(hardwired=true), trend(interval=60, ena-
ble=true)));
 Interfaces.RealInput u2
 annotation(__cdl(connection(hardwired=false),
 trend(interval=120, enable=true),
 propagate(instance="con1.u1",
 connection(hardwired=false),
 trend(interval=120, enable=true))));

 MyController con1 annotation(__cdl(generatePointlist=true));
 MyController con2 annotation(__cdl(generatePointlist=false,
 propagate(instance="subCon1", generate-
Pointlist=true),
 propagate(instance="subCon2", generate-
Pointlist=true)));

equation
 connect(u1, con1.u1);
 connect(u2, con1.u2);
 connect(u1, con2.u1);
 connect(u2, con2.u2);

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

18

 annotation(__cdl(generatePointlist=true));
end Controller;

...

block MyController
 Interfaces.RealInput u1
 annotation(__cdl(connection(hardwired=false), trend(interval=120, ena-
ble=true)));
 Interfaces.RealInput u2
 annotation(__cdl(connection(hardwired=true), trend(interval=60, ena-
ble=true)));
 ...
 SubController1 subCon1;
 SubController2 subCon2;
 ...
 annotation(__cdl(generatePointlist=true));
end MyController;

A translator will generate an annotation propagation list as shown below. There will be a points
list for Controller, Controller.con1, Controller.con2.subCon1 and Control-

ler.con2.subCon1. Also, the annotation connection(hardwired=true), trend(inter-

val=60, enable=true) of con1.u2 will be overridden as connection(hardwired=false),
trend(interval=120, enable=true).
[
 {
 "className": "Controller",
 "points": [
 {
 "name": "u1",
 "hardwired": true,
 "trend": {
 "enable": true,
 "interval": 60
 }
 },
 {
 "name": "u2",
 "hardwired": false,
 "trend": {
 "enable": true,
 "interval": 120
 }
 }
]
 },
 {
 "className": "Controller.con1",
 "points": [
 {
 "name": "u1",
 "hardwired": false,
 "trend": {
 "enable": true,

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

19

 "interval": 120
 }
 },
 {
 "name": "u2",
 "hardwired": false,
 "trend": {
 "enable": true,
 "interval": 120
 }
 }
]
 },
 {
 "className": "Controller.con2.subCon1",
 "points": [
 ...
]
 },
 {
 "className": "Controller.con2.subCon2",
 "points": [
 ...
]
 }
]
]

For an example of a point list generation, consider the pseudo-code shown below.
within Buildings.Controls.OBC.ASHRAE.G36_PR1.TerminalUnits
block Controller "Controller for room VAV box"
 ...;
 CDL.Interfaces.BooleanInput uWin "Windows status"
 annotation (__cdl(connection(hardwired=true),
 trend(interval=60, enable=true)));
 CDL.Interfaces.RealOutput yVal "Signal for heating coil valve"
 annotation (__cdl(connection(hardwired=false),
 trend(interval=60, enable=true)));
 ...
annotation (__cdl(generatePointlist=true, controlledDevice="Terminal unit"));

It specifies that a point list should be generated for the sequence that controls the system or equip-
ment specified by controlledDevice, that uWin is a digital input point that is hardwired, and that
yVal is an analog output point that is not hardwired. Both can be trended with a time interval of
1 minute. The point list table will look as shown below.

System/Equipment Name Type Hardwired? Trend [s] Description
Terminal unit uWin DI Yes 60 Windows status
Terminal unit yVal AO No 60 Signal for heating coil

valve
…

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

20

5.8.5.3 Control point properties

The control point has following properties:

• System/Equipment: It specifies which system/equipment the sequence is controlling.
• Name: It specifies the control point name.
• Type: It specifies the control point type. The types include DI (digital input), DO (digital

output), AI (analog input), and AO (analog output).
• Hardwired: It specifies if the control point is hardwired. The value “Yes” means that the

point is hardwired and the value “No” means that the point is not hardwired.
• Trend: It specifies the interval in seconds to trend the value. When the property is not

specified and when the value equal 0, the point value will not be trended.
• Description: It describes what the control point variable is. If the control point is an out-

put, it describes what the setpoint is; if the control point is an input, it describes what the
measurement or setpoint is.

5.8.6 Connections

Connections connect input to output connectors. In other words, inputs and outputs are connectors
that receive or make accessible values, whereas connections connect inputs to outputs, thereby
ensuring that the value of an input is the same as the value of the connected output.

Informative note: In the graphical representation, the connectors are the triangles that render
every input and output, and the connections are the lines that connect them.

For scalar connectors, each input connector of a block needs to be connected to exactly one output
connector of a block. For vectorized connectors, or vectorized instances with scalar connectors,
each or each element of an input connector needs to be connected to exactly one or one element of
an output connector. Connections are listed after the instantiation of the blocks in an equation
section. The syntax is connect(port_a, port_b) annotation(...); The annota-

tion(...)declares the graphical rendering of the connection.

Informative note: The order of the connections and the order of the arguments in the connect
statement does not matter. For example, to connect an input u of an instance gain to the output
y of an instance maxValue, one would declare

CDL.Reals.Max maxValue "Output maximum value";
CDL.Reals.Gain gain(k=60) "Gain";

equation
 connect(gain.u, maxValue.y);

Only connectors that carry the same data type allow to be connected.
Attributes of the variables that are connected are handled as follows:

• If the quantity, unit, min, or max attributes are set to a non-default value for both con-
nector variables, then they must be equal. Otherwise, an error must be issued.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

21

• If only one of the two connector variables declare the quantity, unit, min, max, nomi-
nal, or unbounded attribute, then this value is applied to both connector variables.

• If two connectors have different values for the displayUnit attribute, then either can be
used.

Informative note: For example,
CDL.Reals.Max maxValue(y(unit="m/s")) "Output maximum value";
CDL.Reals.Gain gain(k=60) "Gain";
CDL.Reals.Gain gainOK(u(unit="m/s"), k=60) "Gain";
CDL.Reals.Gain gainWrong(u(unit="kg/s"), k=60) "Gain";

equation
 connect(gain.u, maxValue.y); // This sets gain.u(unit="m/s") as gain.u does
 // not declare its unit
 connect(gainOK.u, maxValue.y); // Correct, because unit attributes are
 // consistent
 connect(gainWrong.u, maxValue.y); // Not allowed, because of inconsistent
 // unit attributes

Signals shall be connected using a connect statement; assigning the value of a signal in the in-
stantiation of the output connector is not allowed.

Informative note:
This ensures that all control logic is expressed as block diagrams. For example, the following
model is valid:

block MyAdderValid
 Interfaces.RealInput u1;
 RealInput u2;
 Interfaces.RealOutput y;
 Continuous.Add add;
equation
 connect(add.u1, u1);
 connect(add.u2, u2);
 connect(add.y, y);
end MyAdderValid;

whereas the following implementation is not valid in CDL, although it is valid in Modelica

block MyAdderInvalid
 Interfaces.RealInput u1;
 Interfaces.RealInput u2;
 Interfaces.RealOutput y = u1 + u2; // not allowed
end MyAdderInvalid;

5.8.7 Annotations

Annotations must follow the same rules as described in the following Modelica 3.6 Specification:
• 18.2 Annotations for Documentation
• 18.6 Annotations for Graphical Objects, except for

o 18.6.7 User input

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

22

• 18.8 Annotations for Version Handling

Informative note: For CDL, annotations are primarily used to graphically visualize block layouts,
graphically visualize input and output signal connections, and to declare vendor annotations,
(Section 18.4 in Modelica 3.6 Specification).

For CDL implementations of sources such as ASHRAE Guideline 36, any instance, such as a pa-
rameter, input, or output, that is not provided in the original documentation shall be annotated.
For parameter values, the annotation is __cdl(ValueInReference=false) while for other in-
stances, the annotation is __cdl(InstanceInReference=false). For both, if not specified, the
default value is true.

[A specification may look like
parameter Real anyOutOfScoMult(
 final unit = "1",
 final min = 0,
 final max = 1)=0.8
 "Outside of G36 recommended staging order chiller type SPLR multiplier"
 annotation(Evaluate=true, __cdl(ValueInReference=false));

]

Informative Note: This annotation is typically not provided for parameters that are in general
not specified in ASHRAE Guideline 36, such as hysteresis deadband, default gains for a control-
ler, or any reformulations of ASHRAE parameters that are needed for sequence generalization,
for instance, a matrix variable used to indicate which chillers are used in each stage.

5.9 Extension Blocks

Extension blocks support functionalities that cannot, or is hard to, implement with a Composite
Block. They allow implementation of blocks that contain statistical functions such as for regres-
sion, fault detection and diagnostics methods, or state machines for operation mode switches, as
well as proprietary code. Extension blocks are also suited to document proposed new Elementary
Blocks for later inclusion in ASHRAE Standard 231. In fact, Elementary Blocks are implemented
using extension blocks, except that the annotation __cdl(extensionBlock=true) (see above)
is not present.

In CDL, extension blocks must have the annotations:
annotation(__cdl(extensionBlock=true));

This annotation allows tools such as translators to recognize them as extension blocks. Extension
blocks are equivalent to the class block in Modelica. Thus, extension blocks can contain any dec-
larations that are allowed in a Modelica block.

Informative note: The fact that extension blocks allow any declaration that is allowed in a Model-
ica block implies that extension blocks can have any number of parameters, inputs, and outputs
identical to Composite Blocks. It also implies that extension blocks can be used to

• call code, for example, in C or from a compiled library,

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

23

• import a Functional Mockup Unit that may contain a process model or a fault detection
and diagnostics method, and

• implement state machines.

Translation of an extension block to CXF must reproduce the following:

• All parameters (except for protected parameters), inputs, and outputs.
• A Functional Mockup Unit for Model Exchange, version 2.01, with the file name being the

full class name and the extension being .fmu.

Informative note: With OpenModelica 1.20.0, a Functional Mockup Unit for Model Exchange
2.0 of an extension block can be generated with the commands:
echo "loadFile(\"Buildings/package.mo\");" > translate.mos
echo "translateModelFMU(Buildings.Controls.OBC.CDL.Continuous.PID);" >>
translate.mos
omc translate.mos

This will generate the fmu Buildings.Controls.OBC.CDL.Continuous.PID.fmu.

5.10 Replaceable Blocks

CDL allows the use of the Modelica replaceable, constrainedby and redeclare keywords.

The replaceable keyword allows to replace a block by another block when translating a com-
posite block.

To declare a block as replaceable, the syntax is
replaceable ClassName instanceName comment annotation;

where ClassName is the name of the class, instanceName is the name of the instance, and com-
ment and annotation are optional comments or annotations.

Optionally, the constrainedby keyword can be added after instanceName to constrain what
blocks can be used when redeclaring the replaceable block. The declaration is then
replaceable ClassName instanceName constrainedby NameOfConstrainingClass pa-
rameterBindings comment annotation;

where NameOfConstrainingClass is the name of the constraining class, and parameterBind-
ings is optional and can be used to assign parameters, with or without the final keyword.

Informative note: For example, consider a composite block that has a PID controller. Suppose
the developer of the composite block uses its custom PID controller called MyPID, and the devel-
oper wants to allow a user of the composite block to replace the PID controller with any custom
PID controller, as long as it provides the inputs, outputs, and parameters of the elementary block
of the PID controller CDL.Reals.PID.

Then, the composite block can be implemented as

1 See https://fmi-standard.org

https://fmi-standard.org/

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

24

block SomeCompositeBlock "A composite block in a library"
 ...
 parameter Real k = 2 "Proportional gain";
 replaceable MyPID con constrainedby CDL.Reals.PID(k=k) "PID controller";
 ...
end SomeCompositeBlock;

Because of the constrainedby clause, a user of the composite block can replace the control-
ler MyPID with any other PID controller that also provides the inputs, outputs, and parameters
that are present in CDL.Reals.PID. Moreover, the assignment k=k will also be applied when the
controller is redeclared. Such a redeclaration in which a block MyPreferredPID is used for the
instance con can be done using

block SomeCompositeBlock "A composite block in a library"
 parameter Real k = 2 "Proportional gain";
 replaceable Buildings.Controls.OBC.CDL.Reals.PID conPID
 constrainedby Buildings.Controls.OBC.CDL.Reals.PID(k=k)
 "PID controller"
 annotation(Placement(transformation(
 extent = {{-10, -10}, {10, 10}})));

 annotation(uses(Buildings(version = "12.0.0")));

end SomeCompositeBlock;

In a redeclare statement, any parameters can be assigned, for example by writing re-
declare MyPreferredPID conPID(Ti=60), which sets the parameter Ti to 60.

The constrainedby keyword can also be used to allow use of a block that has other parameters
or inputs. A simple example is

package ReplaceableExample
 block ReplaceableBlock
 replaceable Buildings.Controls.OBC.CDL.Reals.Sources.Constant con(k=1)
 constrainedby Buildings.Controls.OBC.CDL.Reals.Sources.CivilTime
 "Replaceable block, constrained by a block that imposes as a require-
ment that the redeclaration provides a block with output y (but no parameter
k is needed)";
 end ReplaceableBlock;

 block MyNewBlock "Composite block, with sou replaced by a Pulse with pe-
riod=0.1"
 ReplaceableBlock repBlo(
 redeclare Buildings.Controls.OBC.CDL.Reals.Sources.Pulse con(pe-
riod=0.1));
 end MyNewBlock;
 annotation (
 uses(Buildings(version = "12.0.0")));
end ReplaceableExample;

In the above code, the constrainedby keyword specifies the block CivilTime.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

25

As CivilTime has only a RealOutput called y, but no parameters or inputs, the Constant block
can be replaced by a Pulse block, although Pulse has no parameter k. Without the con-
strainedby CDL.Reals.Sources.CivilTime clause, Pulse could not have been used as it has
no parameter k.

When translating CDL to CXF, the keywords replaceable, constrainedby and re-
declare need to be evaluated and removed. E.g., they are not present in CXF.

5.11 Extension of a Composite Block

A composite block can have a single extends statement. The extends statement must reference
another Composite Block, but it cannot extend an Elementary Block or an Extension Block.
The extends statement can have any number of declarations that assign a parameter value or pa-
rameter attributes.

Informative note: There are three restrictions compared to the Modelica Language Specifica-
tion:

• Only a single extends statement is allowed. This is for simplicity because two ex-
tends statements could require having to reconcile two different hierarchy trees that ulti-
mately extend from the same base block, but may assign different values to a parameter
that is inherited from the common base block. Such a case would be for example

package MultipleExtends
 block A0
 extends Buildings.Controls.OBC.CDL.Reals.Sources.Constant(k=0);
 end A0;

 block A1
 extends Buildings.Controls.OBC.CDL.Reals.Sources.Constant(k=1);
 end A1;

 block NotValid "Block that is not valid"
 extends A0;
 extends A1;
 end NotValid;

 annotation(
 uses(Buildings(version = "12.0.0")),
 Documentation(
 info = "<p>
Package with a block that is not valid CDL due to multiple extends state-
ments.
</p>"));

end MultipleExtends;

Note that in Modelica, multiple extends are allowed, but the block NotValid is not valid
and tools will issue an error message.

• The break keyword for component deselection is not allowed.
• Modelica allows to assign a value to a variable declared as an input. This is not al-

lowed in CDL. This restriction avoids that input connectors can no longer be

https://specification.modelica.org/maint/3.6/inheritance-modification-and-redeclaration.html#S4.p5

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

26

graphically connected (as they then would have two bindings to a value, causing the
block to be overdetermined).

Informative note: A simple illustrative example of an extends statement would be to extends the
block OBC.Utilities.PIDWithInputGains, restricts its output to be always between 0 and 1,
and adding an output connector that can be used to access the control error.

This could be accomplished as

block MyPID
 extends Buildings.Controls.OBC.Utilities.PIDWithInputGains(
 final yMin = 0,
 final yMax = 1);

 Buildings.Controls.OBC.CDL.Interfaces.RealOutput error "Control error"

annotation(Placement(
 transformation(origin = {240, -120},
 extent = {{-20, -20}, {20, 2
 0}}),
 iconTransformation(origin = {120, -60},
 extent = {{-20, -20}, {20, 2
 0}})));

equation
 connect(controlError.y, error)
 annotation(Line(
 points = {{-178, -6}, {-160, -6},{-160, -120}, {240, -120}},
 color = {0, 0, 127}));
 annotation(uses(Buildings(version = "12.0.0")),
 Documentation(info = "<p>
PID controller that extends the PID controller with input gains, and that
limits the output between 0 and 1, and adds an output connector that re-
ports
the control error.
</p>"));
end MyPID;

The extends statement can also have any number of redeclare statements (Section 5.10).
Informative note: For example, in the block below, the controller with name conPID is replaced
with the block OBC.CDL.Reals.PIDWithReset.
model MyBlockWithRedeclare
 extends SomeCompositeBlock(
 redeclare Buildings.Controls.OBC.CDL.Reals.PIDWithReset conPID);
end MyBlockWithRedeclare;

5.12 Model of Computation

CDL uses the synchronous data flow principle and the single assignment rule, which are defined
below.

1. All variables keep their actual values until these values are explicitly changed. Variable
values can be accessed at any time instant.

2. Computation and communication at an event instant do not take time.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

27

3. Every input connector shall be connected to exactly one output connector.

Informative note: The definition is adopted from and consistent with the Modelica Language
Specification.

In addition, the dependency graph from inputs to outputs that directly depend on inputs shall be
directed and acyclic; i.e., connections that form an algebraic loop are not allowed.

Informative note: To break an algebraic loop, one could place a delay block or an integrator in
the loop because the outputs of a delay or integrator does not depend directly on the input.

5.13 Metadata

Informative Note: CDL provides the ability to embed semantic information which can be useful
in documenting the control logic and integrating it with an existing building automation system.
Examples of this include units, tags and descriptions. Formats for semantic information can be
configured to comply with several open standards and schemas, including those from the pro-
posed ASHRAE Standard 2232, Project Haystack3, and the BRICK consortium4. None of this in-
formation affects the computation of a control signal. Rather, it can be used for example to facil-
itate the implementation of cost estimation tools, or to detect incorrect connections between out-
puts and inputs.

5.13.1 Inferred Properties

Tools that translate CDL control logic to its CXF representation or tools that use CDL shall op-
tionally infer the physical quantities from the unit and quantity attributes of the input and output
connectors.

Informative note:
For example, a differential pressure input signal with name u can be declared as
Interfaces.RealInput u(
 quantity="PressureDifference",
 unit="Pa") "Differential pressure signal" annotation (...);

Examples of information that supports making such inferences:
Numerical value: a binary value (represented by a Boolean data type), an analog value (repre-
sented by a Real data type), and mode (represented by an Integer data type or an Enumera-
tion).
• Source: Hardware point or software point.
• Quantity: such as Temperature, Pressure, Humidity or Speed.

2 https://open223.info
3 https://project-haystack.org
4 https://brickschema.org

https://open223.info/
https://project-haystack.org/
https://brickschema.org/

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

28

• Unit: unit and display unit. (The display unit can be overwritten by a tool. This allows a
control vendor to use the same sequences in North America displaying IP units, and in the
rest of the world displaying SI units.)

5.13.2 Semantic Information

CDL shall support the optional embedding of semantic information within the control logic. The
semantic information shall be embedded and exported to a separate file using the specification
mentioned in this section.

Informative Note: The information within a CDL control logic or the corresponding CXF repre-
sentation includes all the details for a specific control sequence. This includes all the necessary
blocks, the parameters of each of these blocks and how the blocks are connected through their
input and output connectors for that sequence. But this control logic is only one part of the pro-
gramming within the controller, and the controller is only one part of the control system. See
Figure 8.1. To set up a complete control system, there is additional configuration required by
the control contractor or systems integrator. Examples of the tasks involved in configuration are
instantiating the control logic, connecting the right hardware input and output points to the cor-
responding connectors within the control logic, assigning BACnet objects (and correspondingly
addresses), and connecting the logic in the control sequence to functions such as alarming,
scheduling, and trending. Today, most of this configuration is done manually, although some
vendors have tools to assist in the process. In the future, there may be standards which enable
some or all of this process to be automated. The purpose of providing semantic information is to
assist the person (or the tool) responsible for the configuration and integration to help reduce
the complexity and potential errors in this process. The semantic information could also be used
to export a semantic model or to represent the semantic requirements of a specific CDL control
logic in a machine- (or human-) readable format.

Semantic information shall be included within the annotation keyword, using the __cdl anno-
tation. __cdl shall be used when the semantic information is part of a control sequence. The fol-
lowing instances can optionally have annotations containing semantic information:

• input and output connectors
• parameters
• constants
• connections
• elementary blocks
• composite blocks
• extension blocks
• packages

All semantic information shall be included under the semantic section within the __cdl annota-
tions using the syntax shown here:

annotation (__cdl(semantic(<semantic information>)));

where <semantic information> is a place holder for the semantic information.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

29

The semantic annotation declared in the class definition of the CDL class can optionally contain
the metadataLanguageDefinition or the naturalLanguageDefinition for each of the lan-
guages used. The metadataLanguageDefinition and naturalLanguageDefinition are used
to provide additional information about the different metadata languages and natural languages
that are used throughout the class. The language definitions shall contain information such as a
short description of the language or the URL to the webpage of the language.

Informative Note: Even though metadataLanguageDefinition and naturalLanguageDefini-
tion are not mandatory, these definitions will improve the quality of the implementation because
they provide additional information about the semantic standards used in the class.

The optional metadataLanguageDefinition shall have the following syntax:

annotation (__cdl(semantic(metadataLanguageDefinition="<metadataLan-
guageName> <version> <format>" <"informative text">)));

where <metadataLanguageName> shall be replaced with the name of the metadata lan-
guage, <version> is the mandatory entry for the version, <format> is the mandatory
field for format of the language, such as text/turtle, and <"informative text"> is a de-
scription of the language, such as the URL to the language. The version represents the
version of the <metadataLanguageName> used in a particular class. The format repre-
sents the format that the semantic information is expressed in. The format shall be ex-
pressed using MIME types5.

The optional naturalLanguageDefinition shall have the following syntax:

annotation (__cdl(semantic(naturalLanguageDefinition="<naturalLan-
guageName>" <"informative text">)));

where <naturalLanguageName> shall be replaced with the indicator of the natural lan-
guage, represented using the ISO-6396 language codes and <"informative text"> is a
description of the language. All <naturalLanguageName> metadata will be in the format
text/plain MIME type.

Informative Note: Examples of the <metadataLanguageName> include web ontology languages
(OWL) such as Brick or ASHRAE 223p, and examples of <naturalLanguageName> include Eng-
lish (en) and Spanish (es). Below is an example of how to define multiple metadataLan-
guageDefinition and naturalLanguageDefinition in a class definition annotation.

annotation (__cdl(semantic(
metadataLanguageDefinition="Brick 1.3 text/turtle"

"https://brickschema.org/ontology/1.3",
metadataLanguageDefinition="Project-Haystack 3.9.12

application/ld+json"
"https://project-haystack.org/",

5 https://www.iana.org/assignments/media-types/media-types.xhtml
6 https://www.iso.org/iso-639-language-codes.html

https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iso.org/iso-639-language-codes.html
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iso.org/iso-639-language-codes.html

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

30

naturalLanguageDefinition="en" "Text in English language"
)));

The semantic information shall be included as a metadataLanguage/metadata or a natu-
ralLanguage/metadata pair within the semantic section in the __cdl annotation using the fol-
lowing syntax:

annotation (__cdl(semantic(metadataLanguage="<metadataLanguageName>

<version> <format>" "<metadata>")));

annotation (__cdl(semantic(naturalLanguage="<naturalLanguageName>"

"<metadata>")));

where <metadataLanguageName> shall be replaced with the name of the metadata lan-
guage, <version> is an entry for the version of the metadataLanguage, <format> is the
format of the metadataLanguage, such as text/turtle, <naturalLanguageName> shall be
replaced with the ISO-639 indicator of the natural language, and <metadata> is the
metadata for that instance as specified in <metadataLanguageName> or <naturalLan-
guageName> language.

Informative Note: Depending on the metadataLanguage (“<metadataLanguageName> <ver-
sion> <format>”), the metadata can be represented in multiple formats. For example,
text/turtle and application/ld+json are a couple of formats to represent the metadata of
web ontology languages such as Brick and ASHRAE S223P. Project-Haystack metadata can
also be represented in multiple formats such as text/zinc, text/turtle and applica-
tion/ld+json.

Semantic information in the class definition annotations shall be used to define class level infor-
mation about the metadata languages.

Informative Note: Class level information about the metadata languages include, but are not re-
stricted to, namespace definitions (namespaces in ontologies provide a means to unambiguously
interpret identifiers and make the rest of the ontology presentation more readable) and prefixes
(prefixes are shortcut abbreviations and help make the semantic information more readable). In
the example below, for the metadataLanguage “Brick 1.3 text/turtle”, the class definition
annotation has been used to define the namespace prefixes and for “Project-Haystack 3.9.12
application/ld+json”, it has been used to define namespaces, prefixes, and contexts.

annotation (__cdl(semantic(
metadataLanguage="Brick 1.3 text/turtle"

"@prefix Brick: <https://brickschema.org/schema/Brick#> .
 @prefix bldg: <urn:bldg/> . ",

metadataLanguage="Project-Haystack 3.9.12 application/ld+json"
"{\"@context\": { \"ph\": \"https://project-

haystack.org/def/ph/3.9.12#\",
 \"phScience\": \"https://project-

haystack.org/def/phScience/3.9.12#\",
\"phIoT\": \"https://project-

haystack.org/def/phIoT/3.9.12#\",

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

31

\"rdf\": \"http://www.w3.org/1999/02/22-rdf-syntax-ns#\",
\"rdfs\": \"http://www.w3.org/2000/01/rdf-

schema#\"}}")));

If an instance declaration contains semantic information, it overrides the semantic information of
its class definition. If an instance declaration does not contain semantic information, it inherits
the semantic information of its class definition. Parameter (or constant) bindings can also have
semantic information, and they override the semantic information of the parameter (or constant)
declaration whose value is assigned.

Informative Note: Example of overriding semantic information is provided below.

CDL.Reals.MultiplyByParameter gain(k = 100000
"My gain"
annotation(__cdl(semantic(metadataLanguage=”Brick 1.3

text/turtle” “<instance_name> a Brick:Gain_Parame-
ter”))));

If there already exists a semantic model for a particular class or for an instance, it shall be re-
ferred to in the annotation using the syntax defined below:

annotation (__cdl(semantic(metadataLanguage="<metadataLanguageName>
<version> <format>" "url=<path>")));

annotation (__cdl(semantic(naturalLanguage="<naturalLanguageName>"

"url=<path>")));

where <path> shall be either a URL for a model that is on the network or a model that is
present on the file system. If the url= is included in the metadata, the semantic model
will be exported from <path>. If url= is not included in the metadata, <path> shall be
the metadata.

If the metadata model is present on the file system as a separate file, the following syntax shall
be followed:

annotation (__cdl(semantic(metadataLanguage="<metadataLanguageName>
<version> <format>" "url=file:///<path/to/file>")));

annotation (__cdl(semantic(naturalLanguage="<naturalLanguageName>"
"url=file:///<path/to/file>")));

Informative Note: Below are examples of how to refer to an existing “Brick 1.3 text/turtle” se-
mantic model existing on the file system at “/home/user/soda_hall/soda_brick.ttl” and a “Pro-
ject-Haystack 3.9.12 application/ld+json” semantic model on the network at the URL
“https://project-haystack.org/example/download/alpha.jsonld”:

annotation (__cdl(semantic(metadataLanguage="Brick 1.3 text/turtle"
"url=file:///home/user/soda_hall/soda_brick.ttl")));

annotation (__cdl(semantic(metadataLanguage="Project-Haystack 3.9.12

application/ld+json"
"url=https://project-haystack.org/example/download

/alpha.jsonld")));

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

32

<instanceName>: The text <instanceName> (including the < and > characters) within the
metadata of an annotation containing semantic information shall be replaced with the fully qual-
ified name of the instance that contains the semantic annotation. A fully qualified name to an in-
stance refers to the complete hierarchical path that specifies the instance’s location within an ob-
ject structure. This qualified name shall include all parent instances leading up to the current in-
stance, with each level of instantiation separated by an underscore (“_”). If an instance is nested
within multiple levels of instance definitions, the text that replaces <instanceName> shall reflect
the entire chain of instantiation. This avoids the user having to repeat the name of the instance
and makes it less prone to errors and inconsistencies.

Informative Note: An example of CDL semantic information for an instance in a class with multi-
ple metadataLanguage/metadata pair is shown below. We can see that <instanceName> has
been used in the metadata and Brick metadata will be inferred as bldg:THeaCoiSup_in a
Brick:Hot_Water_Supply_Temperature_Sensor . and the Project Haystack identifier as
{"@id": "THeaCoiSup_in"} assuming that the fully qualified path of THeaCoiSup_in is THea-
CoiSup_in.

Example:

Buildings.Controls.OBC.CDL.Interfaces.RealInput THeaCoiSup_in

"Heating coil water supply temperature measurement"
annotation (

Placement(transformation(extent={{-140,-180},{-100,-140}})),
__cdl(semantic(
metadataLanguage="Brick 1.3 text/turtle"

"bldg:<instanceName> a
Brick:Hot_Water_Supply_Temperature_Sensor .",

metadataLanguage=" Project-Haystack 3.9.12 application/ld+json"
"{
 \"@id\": \"_:<instanceName> \",
 \"ph:hasTag\": [

{\"@id\": \"phIoT:cur\"},
{\"@id\": \"phIoT:hot\"},
{\"@id\": \"phIoT:leaving\"},
{\"@id\": \"phIoT:point\"},
{\"@id\": \"phIoT:sensor\"},
{\"@id\": \"phScience:temp\"},
{\"@id\": \"phScience:water\"}

],
 \"rdfs:label\": \" Heating Hot Water Supply

Temperature\" }",
naturalLangauge="en" "<instanceName> is a temperature reading in-

put that should be hardwired to heating coil temperature sensor")));

<parameter>: This syntax allows for a value of a parameter to be used within an annotation con-
taining semantic information where the parameter shall refer to the name of a parameter in-
stance within the class. The text <parameter> (including the < and > characters) shall be re-
placed by the value of the parameter. The class must have an instance of a parameter with the
name specified by <parameter>, otherwise the specification is not valid.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

33

Informative Note: In the example below, if the fully qualified name of reaFloSup is reaFloSup,
the <instanceName> will be replaced by reaFloSup. The location of the sensor, represented by
the brick:hasLocation relationship, after replacing <instanceName> will be bldg:<zon>.
<zon> refers to the value of the zon parameter within the instantiated reaFloSup, which is east.
Hence, the completely evaluated semantic information becomes:
 bldg:reaFloSup a brick:Supply_Air_Flow_Sensor;
 brick:hasLocation bldg:east .

Example:

MyCompositeBlock.MyFlowSensor reaFloSup (zon="east") "Supply Air Flow Rate"
annotation (__cdl(semantic(
 metadataLanguage="Brick 1.3 text/turtle"
 "bldg:<instanceName> a brick:Supply_Air_Flow_Sensor;
 brick:hasLocation bldg:<zon> .")));

The semantic information of an instance shall be able to refer to the semantic information of
other instances declared in the class. If the instance does not exist, the semantic model is invalid.

Informative Note: In the below example, the semantic information of heating coil heaCoi is re-
ferring to the semantic information of the hot water supply temperature sensor THeaCoiSup_in.

Example:

Modelica.Blocks.Interfaces.RealInput THeaCoiSup_in

"Heating coil water supply temperature measurement"
annotation (Placement(transformation(extent={{-140,-180},{-100,-

140}})),
 __cdl(semantic(
 metadataLanguage="Brick 1.3 text/turtle"

"bldg:<instanceName> a
Brick:Hot_Water_Supply_Temperature_Sensor ."

)));
Buildings.Fluid.HeatExchangers.DryCoilEffectivenessNTU heaCoi(

show_T=true,
dp1_nominal=3000,
dp2_nominal=0) "Heating coil"
annotation (Placement(transformation(extent={{118,-36},{98,-56}})),
 __Buildings(semantic(

metadataLanguage="Brick 1.3 text/turtle"
"bldg:<instanceName> a Brick:Heating_Coil ;

brick:hasPoint bldg:THeaCoiSup_in ."
)));

If a class inherits another class (CDL only allows for inheriting one class), all the semantic infor-
mation in the classes is inherited. However, if the classes being inherited and the class inheriting
it contains different metadataLanguage or naturalLanguage due to differences in any of
<metadataLanguageName> or <version> or <format> or <naturalLanguageName> parts of the
syntax, they shall be treated as different languages.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

34

If an inherited replaceable instance has been replaced using the redeclare keyword, the se-
mantic information of the instance that replaced the original instance shall be used, and the se-
mantic information of the replaced class shall be ignored. If there is no semantic information in
the redeclared instance annotation, any semantic information of the constraining clause (using
the constrainedby Modelica keyword) of the original replaceable instance shall be used. Any
semantic information in the original replaceable instance shall not be used if it has been re-
declared irrespective of the presence or absence of semantic information in the constraining
clause of the redeclared instance.

6 CONTROL EXCHANGE FORMAT (CXF)

6.1 Introduction

CXF is a representation of CDL in a format that is intended to be readily imported and exported
into commercial building automation systems. For example, a commercial control provider
might utilize CXF to import control logic from a design tool for deployment to their commercial
building automation system for a particular project. Structurally, the content of a logic in CDL
and CXF are identical, in that both utilize the same elementary blocks, composite blocks, and ex-
tension blocks as well as constants, parameters, input connectors, and output connectors. While
CDL has language constructs that are used to build library of sequences, CXF was designed to
only represent a specifically configured logic. The logic described in a CDL implementation is
identical to the logic described in its CXF representation. But there are several key differences
between CDL and CXF:

• CXF is defined utilizing the linked data format JSON-LD, while CDL utilizes the model-
ing language Modelica. JSON-LD is a syntax to serialize linked data in JSON (ECMA-
404).

• There is a translation process required to convert a control logic from CDL to CXF.
• For ElementaryBlocks, their CXF representation does not include the implementation

(equation section).
• Like many scientific modeling languages, Modelica requires tight casting of data types.

Informative Note: For example, in Modelica, a data type needs to be declared as type
Real or Integer. Real data are not allowed to be tested for equality since computa-
tions are prone to rounding errors.

Informative Note:
When importing a CXF representation of a CDL logic into a commercial control system
that does not support Real or Integer data types, the commercial entity's "CDL im-
port" software tool must determine how to handle the Real and Integer InputConnect-
ors, OutputConnectors, Parameters, and Constants. For example, the tool could change
it to Analog. Similarly, while exporting a CXF representation of a control logic imple-
mented in a commercial control system, the commercial entity's "CDL export" software
tool must decide how to translate unsupported data types such as Analog into Real or
Integer InputConnectors, OutputConnectors, Parameters, and Constants.

https://www.w3.org/TR/json-ld11/
https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://ecma-international.org/publications-and-standards/standards/ecma-404/

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

35

• Control logic which utilizes arrays (both one- and multi -dimensional) in CDL shall have
the option to be modified (or "flattened") in CXF (more details provided in a later sec-
tion).

6.2 Classes and Properties

A valid CXF file contains Blocks (ElementaryBlocks, CompositeBlocks, ExtensionBlocks or a
combination of these) and each instance of a Block uses the set of InputConnectors, OutputCon-
nectors, Parameters, and Constants as defined within definition of the Block. To support the
translation of a CDL control logic to its CXF representation, a Resource Description Framework
graph representation of the standard has been provided in a CXF-Core.jsonld file using the
MIME type application/ld+json. CXF-Core.jsonld. See the appendix for links to digital
versions of this file. The key classes and properties present in CXF-Core.jsonld that can be used
to create CXF classes are shown in Table 6-1 and Table 6-2 respectively.

Table 6-1Key classes within CXF-Core.jsonld

Class Description
Package A Package is a spe-

cialized class used
to group multiple
Blocks.

Block A Block is the ab-
stract interface of a
control logic.

ElementaryBlock An ElementaryBlock
defined by ASHRAE
S231 (subClassOf
Block)

CompositeBlock A CompositeBlock is a
collection of Elemen-
taryBlocks, Exten-
sionBlocks or other
CompositeBlocks (sub-
ClassOf Block) and
the connections
through their inputs
and outputs.

ExtensionBlock An ExtensionBlock
supports functionali-
ties that cannot, or
are hard to, imple-
ment with a Com-
positeBlock (subClas-
sOf Block).

InputConnector An InputConnector
provides an input to
a Block.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

36

OutputConnector An OutputConnector
provides an output
from a Block.

Parameter A Parameter is a
value that is time-
invariant and cannot
be changed based on
an input signal.

Constant A Constant is a value
that is fixed at com-
pilation time.

DataType A data type descrip-
tion for InputCon-
nectors, OutputCon-
nectors, Parameters
and Constants.

BooleanInput An InputConnector of
the Boolean data
type.

BooleanOutput An OutputConnector of
the Boolean data
type.

IntegerInput An InputConnector of
the Integer data
type.

IntegerOutput An OutputConnector of
the Integer data
type.

RealInput An InputConnector of
the Real data type.

RealOutput An OutputConnector of
the Real data type.

EnumerationType An Integer enumera-
tion starting with
the value 1, each el-
ement is mapped to a
unique String.

String A data type to repre-
sent text.

Table 6-2: Key properties within CXF-Core.jsonld

Property Domain Range Description
hasInput Block InputCon-

nector
A property that relates an
instance of an InputCon-
nector with a Block.

hasOutput Block OutputCon-
nector

A property that relates an
instance of an OutputCon-
nector with a Block.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

37

hasParameter Block Parameter A property that relates an
instance of a Parameter
with a Block.

hasConstant Block Constant A property that relates an
instance of a Constant
with a Block.

hasInstance Block Block, In-
putCon-
nector,
OutputCon-
nector, Pa-
rameter,
Constant

A property that associates
an instance of an In-
putConnector, OutputCon-
nector, Parameter, Con-
stant or a Block within a
Block with the instance of
the Block itself.

hasFmuPath ExtensionBlock String A property that specifies
the (local or on the net-
work) path to a Functional
Mockup Unit implementation
of an ExtensionBlock.

isOfDataType InputConnector,
OutputCon-
nector, Parame-
ter, Constant

DataType A property that specifies
the data type for in-
stances of InputConnect-
ors, OutputConnectors, Pa-
rameters and Constants.

containsBlock Block Block A property that specifies
that an instance of a
Block is composed in part
with an instance of an-
other Block.

connectedTo OutputCon-
nector, In-
putConnector

InputCon-
nector,
OutputCon-
nector

A property that relates
the output of one Block to
the input of another Block
(and vice-versa). Only In-
putConnectors and Out-
putConnectors that carry
the same data type can be
connected.

translationSoft-
ware

Package, Block String A property that specifies
the name of the software
used to generate the CXF
representation of the con-
trol logic.

translationSoft-
wareVersion

Package, Block String A property that specifies
the version of the soft-
ware used to generate CXF
representation of the con-
trol logic.

6.3 Generating CXF from an instance of a CDL class

If the instantiation of a CDL block (within a Modelica or another CDL class) contains the anno-
tation __cdl(export=true), the CDL class of the instantiated block shall be translated to CXF.
Specifying the export annotation is optional and if unspecified, export=false is assumed.

6.4 Source of a CXF translation

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

38

The CXF representation of a control logic shall optionally include the name and the version of
the software that generated it using the properties translationSoftware and translation-
SoftwareVersion respectively.

6.5 Representing Instances in CXF

In the CXF representation of a CDL control logic, the instances of the CDL class shall contain
the entire package path of the CDL class, the octothorpe character (#), followed by the name of
the instance. An (“child”) instance of an (“parent”) instance shall be referenced in CXF by the
parent instance’s CXF representation, followed by a period character (.) and then the child in-
stance’s name. Additionally, the CXF representation of the parent instance shall contain a has-
Instance property associating it to the child instance.

Informative Note: Example of a CDL instance representation in CXF

CDL:

 within ExamplePackage;
 block ExampleSeq
 CDL.Reals.MultiplyByParameter gain(k = 100000)
 "My gain";
 end ExampleSeq;

CXF reference to gain instance: ExamplePackage.ExampleSeq#gain
CXF reference to gain.k instance: ExamplePackage.ExampleSeq#gain.k
CXF property linking gain and gain.k:
 ExamplePackage.ExampleSeq#gain S231:hasInstance
 ExamplePackage.ExampleSeq#gain.k .

6.6 Handling Arrays and Expressions

Arrays and expressions in a CDL class shall be represented in CXF as specified below:

• Arrays (both one-dimensional (vectors) and multi-dimensional): In the CXF translation,
array references shall either be preserved or flattened. If the array references are to be
flattened, the indices appearing within square brackets ([and]) in CDL shall be ap-
pended with the underscore (_) character and each index shall be concatenated with the
underscore character (_).

Informative Note: For example, if the array references are preserved, A[1] in CDL shall
be referenced as A[1] in CXF. If they are flattened, A[1] shall be represented as A_1
and B[1,2] shall be represented as B_1_2.

Array references in CDL shall be flattened in the row-major approach. Flattened array
references shall be generated row-wise, starting from the left-most element of the first
row to the right-most element of the first row, before advancing to the next row, until the
right-most element of the last row.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

39

If there already exists an instance in the CDL logic with the same name as a flattened ar-
ray reference, then the translation process shall raise an error.

Informative Note: For example, if in a CDL class, there exists a parameter instance A_1
and a vector with 3 elements A[3], upon flattening, references to the first element of the
vector (A[1]) would become A_1. As this instance already exists, the CXF translator tool
shall raise an error

• Expressions: The CXF translation of a CDL control logic shall either preserve or evaluate
all the expressions present in the CDL logic, such as those within assignment operations,
conditional assignments, and arithmetic operations. By default, the expressions shall be
preserved in the CXF representation. If the expressions must be evaluated and the expres-
sions contain references to a parameter, the value of the parameter shall be used in evalu-
ating the expression. If the expressions must be evaluated and expressions contain refer-
ences to parameter(s) that do not have a value binding, then the translation process shall
raise an error.

6.7 ExtensionBlocks

Instances of ExtensionBlocks within a CDL class shall contain the annotation __cdl(exten-
stion=true). The location of the Functional Mockup Unit implementation of the Exten-
sionBlock shall be included in the CXF representation using the property hasFmuPath.

7 ELEMENTARY BLOCKS

7.1 Introduction

This standard includes a set of definitions for Elementary Blocks. The definition of an Elemen-
tary Block starts with the encoding (CDL or CXF), followed by the package name, which is used
to structurally organize the blocks. See Figure 3. The full name is called the long class name,
and the last part of the name (“Add”) is called the short class name.

Elementary Blocks are the elements that are at the root of this standard. Elementary Block defini-
tions standardize their inputs, outputs, parameters, functionality. They also provide suggested
graphical representation.

7.2 Specifying Elementary Blocks

Elementary Blocks have the same naming pattern as Composite Blocks and Extension Blocks,
e.g., their long-qualified name starts with a list of package names, separated by a dot, and ends
with the short name of the block. Elementary Blocks are stored in sub-packages of the CDL
package. For example, the long name of the Add block for Reals and Integers is CDL.Re-
als.Add and CDL.Integers.Add. While here the package name is indicative of the data
types of its inputs and outputs, the definition of the blocks declares the data type for each input,
output, and parameter.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

40

There are three elements required to properly apply the elementary blocks defined in this standard.

1. CDL: Indicates that the block follows the Controls Description Language.
2. Packages: For many blocks, the “package” name is used to describe the type of block.

Examples of packages include Conversions, Integers, Psychrometrics, etc. Inputs, outputs,
and parameters for blocks used in CDL will always be of the data types of Reals, Integers,
or Booleans. The elements used in CXF can follow the allowed CDL options, as well as
the use of Analogs in place of Reals or Integers. There are one or multiple package names
that are appended to CDL or CXF. Package names are used to organize the blocks and to
uniquely name them.

3. Elementary Function: The final part to defining a block is the elementary function. Ele-
mentary function names refer to the function of the block which is typically a mathemati-
cal or logical functions.

Example of a fully qualified name of an Elementary Block:

Figure 7-1: Naming for Elementary Blocks

Informational Notes:

• Each description of Elementary Blocks includes a table that shows the required parame-
ters, inputs and outputs.

• The term Boolean is used in this standard to refer to two state values such as true/false,
which for some controllers may be understood as on / off or open / close. The term Binary
is used to describe this in ASHRAE 135 (BACnet) and is also widely used in control sys-
tems. These terms are intended to represent two state actions; however, Boolean is the
preferred term.

• Elementary blocks can also be represented in CXF. For more details refer to Section 6.

7.3 Symbols

Each block is defined with a graphical representation (a symbol) which illustrates the function of
that block. The use of these symbols is recommended but not required for compliance with the
standard.

Symbol colors shall be coded as follows:

CDL.Reals.Add

CDL Packages Elementary Function

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

41

• If the block has any input being sampled, the block symbol is yellow, with the RGB value
as {255,213,170}.

• If the block does not have any input being sampled and has Boolean connectors, the block
symbol is gray, with the RGB value as {210,210,210}.

• If the block does not have any input being sampled and does not have Boolean connectors,
the block is white, with the RGB values as {255,255,255}.

Table 7-1:Color codes for input and outputs of symbols

Connector RGB code
Red Green Blue

BooleanInput
LineColor 255 0 255
FillColor 255 0 255

BooleanOutput
LineColor 255 0 255
FillColor 255 255 255

IntegerInput
LineColor 255 127 0
FillColor 255 127 0

IntegerOutput
LineColor 255 127 0
FillColor 255 255 255

RealInput
LineColor 0 0 127
FillColor 0 0 127

RealOutput
LineColor 0 0 127
FillColor 255 255 255

7.4 Elementary Blocks

Math Functions:

Name Details Data Types Function
Abs 7.5.1 Real, Integer Returns the absolute value of an analog

value input
Add 7.5.2 Real, Integer Adds two analog values
AddParame-
ter

7.5.3 Real, Integer Adds an analog value with a parameter
value

Acos 7.5.4 Real Returns the arccosine of an analog
value: y = arccosine (u)

Asin 7.5.5 Real Returns the arcsine of an analog value:
y = arcsine (u)

Atan 7.5.6 Real Returns the arctangent of an analog
value: y = arctangent (u)

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

42

Atan2 7.5.7 Real Returns the arctangent of two analog
values: y = arctangent (u1 / u2)

Average 7.5.8 Real Returns the average of analog values
input. y=(u1+u2)/2

Cos 7.5.9 Real Returns the cosine of an analog value: y
= cosine (u)

Derivative 7.5.10 Real Returns the approximate derivative of
an input

Divide 7.5.11 Real Divides two analog values as shown: y =
u1 / u2

Exp 7.5.12 Real Returns the base-e exponential of an
analog value: y = exp (u)

Integrator-
WithReset

7.5.13 Real Integrates an input using a gain param-
eter. Has the ability to reset the inte-
gration using a boolean trigger.

LimitSle-
wRate

7.5.14 Real Limits the increase or decrease rate of
the input,

Line 7.5.15 Real Accepts parameters that define two
support points of a line. The line is then
used to interpolate or extrapolate the
input, optionally within an upper and
lower bound.

Log 7.5.16 Real Returns the natural log of an analog
value: y = log(u) | u > 0

Log10 7.5.17 Real Returns the base 10 log of an analog
value: y = log10(u) | u > 0

MatrixGain 7.5.18 Real Outputs the gain matrix with the input
signal vector

MatrixMax 7.5.19 Real Output vector for the maximum ele-
ment of a matrix

MatrixMin 7.5.20 Real Output vector for the minimum ele-
ment of a matrix

Max 7.5.21 Real, Integer Returns the maximum value of two in-
puts

Min 7.5.22 Real, Integer Returns the minimum value of two in-
puts

Modulo 7.5.23 Real Returns the remainder of first analog
input divided by the second analog in-
put

MovingAv-
erage

7.5.24 Real Function that outputs a moving aver-
age.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

43

MultiMax 7.5.25 Real Outputs the maximum element from an
input vector.

MultiMin 7.5.26 Real Outputs the minimum element from an
input vector.

Multiply 7.5.27 Real, Integer Returns the product of two inputs.
u=x1*x2

MultiplyBy-
Parameter

7.5.28 Real Multiplies an analog value with a pa-
rameter value: y = k * u

MultiSum 7.5.29 Real, Integer Multiplies each input with a parameter
and outputs its sum,

y = k[1]*u[1] + k[2]*u[2] + ...… +
k[n]*u[n]

 7.5.30 Real PID Controller
PID-
WithReset

7.5.31 Real PID Controller with reset

Round 7.5.32 Real Function that rounds a value to a speci-
fied number of digits

Sin 7.5.33 Real Returns the sine of an analog value: y =
sin (u)

Sort 7.5.34 Real Function that sorts elements of a real
input vector in ascending or descending
order.

Sqrt 7.5.35 Real Returns the square root of a value: y =
sqrt(u) for u >= 0

Subtract 7.5.36 Real, Integer Returns the difference of two values: y
= u1 – u2

Tan 7.5.37 Real Returns the tangent of an analog value:
y = tan (u)

Logical Functions:

Name Details Data Types Function
And 7.5.38 Boolean Performs AND logic on two boolean

inputs
Change 7.5.39 Integer, Boolean Detects logical change of input in ei-

ther direction
Edge 7.5.40 Boolean Like ‘Change’ except only detects log-

ical change of input from ‘false’ to
‘true’

FallingEdge 7.5.41 Boolean Like ‘Edge’ except from ‘true’ to
‘false’

Latch 7.5.42 Boolean When input goes ‘true’ output is
‘true’ unless reset is made ‘true’

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

44

MultiAnd 7.5.43 Boolean Logical AND with more than two in-
puts

MultiOr 7.5.44 Boolean Logical OR with more than two inputs
Nand 7.5.45 Boolean Logical NAND on two boolean inputs:

same as NOT [x AND y]
Nor 7.5.46 Boolean logical NOR on two boolean inputs:

same as NOT [x OR y])
Not 7.5.47 Boolean Outputs the logical opposite of the

input
Or 7.5.48 Boolean Performs OR logic on two boolean in-

puts
Proof 7.5.49 Boolean Verifies that feedback matches com-

mand
Switch 7.5.50 Real, Integer, Bool-

ean
Outputs one of two boolean inputs
based on boolean input

Toggle 7.5.51 Boolean Changes the boolean output each
time the boolean input changes from
false to true; except when the bool-
ean ‘clr’ input is true

VariableP-
ulse

7.5.52 Boolean Produces an output that cycles at a
variable rate

Xor 7.5.53 Boolean Performs XOR logic on two boolean
inputs

Psychrometrics Functions:

Name Details Data Types Function
DewPoint_TDry-
BulPhi

7.5.54 Real Calculates the dew point tempera-
ture from dry bulb temperature and
relative humidity

Specifi-
cEnthalpy_TDry-
BulPhi

7.5.55 Real Calculates specific enthalpy from dry
bulb temperature and relative hu-
midity

WetBulb_TDry-
BulPhi

7.5.56 Real Calculates the wet bulb temperature
from dry bulb temperature and rela-
tive humidity

Comparisons:

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

45

Name De-

tails
Data Types Function

Equal 7.5.57 Integer Function that indicates when two input
values are equal by making the output
true

Greater 7.5.58 Real, Integer When analog input ‘u1’ is greater than
analog input ‘u2’ the output is true

GreaterEqual 7.5.59 Integer When analog input ‘u1’ is greater than or
equal to analog input ‘u2’ the output is
true.

GreaterEqual-
Threshold

7.5.60 Integer When analog input ‘u1’ is greater than or
equal to a fixed parameter value the out-
put is true.

Greater-
Threshold

7.5.61 Real, Integer When analog input ‘u1’ is greater than a
fixed parameter value the output is true.

Hysteresis 7.5.62 Real Function that compares an analog input
to analog parameters ‘uHigh’ and ‘uLow’
to determine the output.

Less 7.5.63 Real, Integer When analog input ‘u1’ is less than ana-
log input ‘u2’ the output is true.

LessEqual 7.5.64 Integer When analog input ‘u1’ is less than or
equal to analog input ‘u2’ the output is
true

LessEqual-
Threshold

7.5.65 Integer When analog input ‘u1’ is less than or
equal to a parameter value the output is
true.

LessThreshold 7.5.66 Real, Integer When analog input ‘u1’ is less than the
parameter value the output is true.)

Limiter 7.5.67 Real Compares an analog input against two
parameters ‘uMax’ and ‘uMin’ and
passes any value between these parame-
ters or the limit value if the input is out-
side these bounds.

OnCounter 7.5.68 Boolean Function that increments the analog out-
put [starting from a pre-defined value]
each time the boolean input changes to
true; ‘reset’ restarts counter.

Pre 7.5.69 Boolean Breaks loops by a small delay.
Ramp 7.5.70 Real It has one boolean input `active` and a

real input `u`. If the input `active` is
`true`, the change of input `u` will be lim-
ited by the rate between `raisingSle-
wRate` and `fallingSlewRate`.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

46

Stage 7.5.71 Integer Outputs the total number of stages to be
enabled. It has a numeric input (0-1) and
each stage has a minimum hold time.

Conversions:

Name Details Data Types Function
BooleanToIn-
teger

7.5.72 Integer, Boolean Converts a Boolean value to an Integer.

Integer-
ToReal

7.5.73 Integer, Boolean Converts an Integer to a Real value.

RealToInte-
ger

7.5.74 Real, Integer Rounds a Real value to the nearest Inte-
ger.

BooleanTo-
Real

7.5.75 Real, Boolean Converts a Boolean value to a Real value

Timers:

Name Details Data Types Function
Timer 7.5.76 Boolean Boolean input starts timer, time

output accumulates while input is
true [0 when false], boolean output
is true when threshold parameter
[time limit] is exceeded

TimerAccu-
mulating

7.5.77 Boolean Boolean input starts timer, time
output accumulates whenever in-
put is true and retains value,bool-
ean reset input resets accumulated
time to 0, boolean output is true
when threshold parameter [time
limit] is exceeded)

TrueDelay 7.5.78 Boolean When boolean input is true and the
delay time parameter expires, the
boolean output is true; boolean
output is immediately false when
logical input is false

TrueFalse-
Hold

7.5.79 Boolean Holds an output signal for at least a
specified duration

Sources:

Name Details Data Types Function
Sources.Calen-
derTime

7.5.80 Real A block that outputs the current time,
day, month and year

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

47

Sources.CivilTi
me

7.5.81 Real A block that outputs the current sys-
tem time.

Sources.Con-
stant

7.5.82 Real, Integer, Boolean A block that outputs a constant value

Sources.Pulse 7.5.83 Real, Integer, Boolean A block that outputs a pulse signal
Sources.Ramp 7.5.84 Real A block that outputs a ramp signal
Sources.Sam-
pleTrigger

7.5.85 Boolean A block that outputs a signal that is
only true at sample times (defined by
parameter period) and is otherwise
false.

Sources.Sin 7.5.86 Real A block that outputs a sine signal
Sources.Time-
Table

7.5.87 Real, Integer, Boolean A block that outputs the result of a
table look-up with respect to time

Discrete:

Name Details Data Types Function
FirstOrder-
Hold

7.5.88 Real A block that outputs the extrapola-
tion through the values of the last
two sampled input signals.

Sampler 7.5.89 Real A block that outputs the input signal,
sampled at a sampling rate defined
via a parameter

TriggeredMax 7.5.90 Real A block that outputs the input signal
whenever the trigger input signal is
rising (i.e., trigger changes to true).
The maximum, absolute value of the
input signal at the sampling point is
provided as the output signal.

Triggered-
MovingMean

7.5.91 Real A block that outputs the triggered
moving mean value of an input sig-
nal. At the start of the simulation,
and whenever the trigger signal is ris-
ing (i.e., the trigger changes to true),
the block samples the input, com-
putes the moving mean value over
the past ‘n’ samples, and produces
this value at its output.

Triggered-
Sampler

7.5.92 Real A block samples the continuous input
signal whenever the trigger input sig-
nal is rising (i.e., trigger changes from
false to true) and provides the sam-
pled input signal as output. Before

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

48

the first sampling, the output signal
is equal to the initial value defined
via parameter ‘y_start’.

UnitDelay 7.5.93 Real Output ‘y’ is the input ‘u’ of the pre-
vious sample instant. Before the sec-
ond sample instant, the output ‘y’ is
identical to parameter ‘y_start’.

ZeroOrder-
Hold

7.5.94 Real A block that outputs the sampled in-
put signal at sample time instants.
The output signal is held at the value
of the last sample instant during the
sample points. At initial time, the
block feeds the input directly to the
output.

Routing

Name Details Data Types Function
ExtractSig-
nal

7.5.95 Real, Integer, Boolean Extract signals from the vector-val-
ued input signal and transfer them to
the vector-valued output signal. The
extraction scheme is specified by a
parameter.

Extractor 7.5.96 Real, Integer, Boolean Extracts scalar signal from the vector-
valued input signal vector dependent
on input index

ScalarRepli-
cator

7.5.97 Real, Integer, Boolean Replicates an input signal to an array
of ‘nout’ identical output signals.

VectorFilter 7.5.98 Real, Integer, Boolean Filters a vector input of size ‘nin’ to a
vector of size ‘nout’ given a Boolean
mask ‘msk’.

VectorRep-
licator

7.5.99 Real, Integer, Boolean Replicates a vector input signal of
size ‘nin’, to a matrix with ‘nout’ rows
and ‘nin’ columns, where each row is
duplicating the input vector.

Utilities:

Name Details Data Types Function
Assert 7.5.100 N/A Print a warning message when input

becomes false

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

49

SunRiseSet 7.5.101 N/A Outputs the next sunrise and sunset
times in UTC.

Interfaces:

Name Details Data Types Function
Input 7.5.103 Real, Integer, Boolean Connector with one input signal of a

specified data type
Output 7.5.104 Real, Integer, Boolean Connector with one output signal of

a specified data type

7.5 Elementary Block Descriptions

The following section includes a description of each Elementary Block including its functionality,
symbol, parameters, inputs, and outputs. Compliance with this standard requires implementation
of the Elementary Blocks which adhere to these descriptions.

7.5.1 Abs

Outputs the absolute value of an input

Description: Block that outputs y = abs(u), where u is an input.

7.5.1.1 CDL.Reals.Abs

Symbol

Parameters
N/A

Inputs
 Data Types Name Description
Real u Input for absolute function

Outputs

 Data Type Name Description
Real y Absolute value of the input

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

50

7.5.1.2 CDL.Integers.Abs

Symbol

Parameters
N/A

Inputs
 Data Types Name Description
Integer u Input for absolute function

Outputs

 Data Type Name Description
Integer y Absolute value of the input

7.5.2 Add

Output the sum of the two inputs

Description: Block that outputs y as the sum of the two input signals u1 and u2, y = u1 + u2.

7.5.2.1 CDL.Reals.Add

Symbol

Parameters:
N/A

Inputs

 Data Types

Name Description

Real u1 Input to be added
Real u2 Input to be added

Outputs

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

51

 Data Type Name Description
Real y Sum of the two inputs

7.5.2.2 CDL.Integers.Add

Symbol

Parameters:
N/A

Inputs

 Data Types

Name Description

Integer u1 Input to be added
Integer u2 Input to be added

Outputs

 Data Type Name Description
Integer y Sum of the two inputs

7.5.3 AddParameter

Outputs the sum of an input plus a parameter

Description: Block that outputs y = u + p, where p is parameter and u is an input.

7.5.3.1 CDL.Reals.AddParameter

Symbol

Parameters
 Data Types Name Default Description

Real p n/a Parameter to be added to the input

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

52

Inputs
 Data Types Name Description
Real u Input to be added to the parameter

Outputs
 Data Type Name Description
Real y Sum of the parameter and the input

7.5.3.2 CDL.Integers.AddParameter

Symbol

Parameters
 Data Types Name Default Description

Integer p n/a Parameter to be added to the input

Inputs
 Data Types Name Description
Integer u Input to be added to the parameter

Outputs
 Data Type Name Description
Integer y Sum of the parameter and the input

7.5.4 Acos

Outputs the arc cosine of the input

Description: Block that outputs y = acos(u), where u is an input.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

53

7.5.4.1 CDL.Reals.Acos

Symbol

Parameters
N/A

Inputs
 Data Types Name Description
Real u Input for arc cosine function

Outputs
 Data Type Name Description
Real y Arc cosine of the input

7.5.5 Asin

Outputs the arc sine of the input

Description: Block that outputs y = asin(u), where u is an input.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

54

7.5.5.1 CDL.Reals.Asin

Symbol

Parameters:
N/A

Inputs
 Data Types Name Description
Real u Input for the arc sine function

Outputs
 Data Type Name Description
Real y Arc sine of the input

7.5.6 Atan

Outputs the arc tangent of the input

Description: Block that outputs y = atan(u), where u is an input

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

55

7.5.6.1 CDL.Reals.Atan

Symbol

Parameters
N/A

Inputs
 Data Types Name Description
Real u Input for the arc tangent function

Outputs
 Data Type Name Description
Real y Arc tangent of the input

7.5.7 Atan2

Output atan(u1/u2) of the inputs u1 and u2

Description: Block that outputs the tangent-inverse y = atan2(u1, u2) of the input u1 divided by
the input u2. u1 and u2 shall not be zero at the same time.

Informational Note:
Atan2 uses the sign of u1 and u2 in order to construct the solution in the range -π ≤ y ≤ π,
whereas CDL.Reals.Atan gives a solution in the range -π/2 ≤ y ≤ π/2.

7.5.7.1 CDL.Reals.Atan2

Symbol

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

56

Parameters
N/A

Inputs
 Data Types Name Description
Real u1 Input u1 for the atan2(u1/u2) function
Real u2 Input u2 for the atan2(u1/u2) function

Outputs
 Data Type Name Description
Real y Output with atan2(u1/u2)

7.5.8 Average

Outputs the average of two inputs

Description: Block that outputs y = (u1 + u2) / 2, where u1 and u2 are inputs.

7.5.8.1 CDL.Reals.Average

Symbol

Parameters
N/A

Inputs
 Data Types Name Description
Real u1 Input for average function
Real u2 Input for average function

Outputs

 Data Type Name Description
Real y Output with the average of the two inputs

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

57

7.5.9 Cos

Outputs the cosine of an input

Description: Block that outputs y = cos(u), where u is an input.

7.5.9.1 CDL.Reals.Cos

Symbol

Parameters
N/A

Inputs
 Data Types Name Description
Real u Input for the cosine function

Outputs

 Data Type Name Description
Real y Cosine of the input

7.5.10 Derivative

Outputs the approximates the derivative of the input

Description: This block defines the transfer function between the input u and the output y as approximated
derivative:

y = k
𝑠𝑠

𝑇𝑇 𝑠𝑠 + 1
 𝑢𝑢

If k=0, the block reduces to y=0.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

58

7.5.10.1 CDL.Reals.Derivative

Symbol

Parameters
 Data Types Name Default Description

Real y_start 0 Initial value of output (=state)

Inputs
 Data Types Name Description
Real k Input for the gain
Real T Input for the time constant (T>0 required;

T=0 is ideal derivative block) [s]
Real u Input to be differentiated

Outputs
 Data Type Name Description
Real, Integer y Approximation of derivative du/dt

7.5.11 Divide

Output of first input divided by the second input

Description: Block that outputs y = u1/u2, where u1 and u2 are inputs.

7.5.11.1 CDL.Reals.Divide

Symbol

Parameters
N/A

Inputs
 Data Types Name Description
Real u1 Input for dividend
Real u2 Input for divisor

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

59

Outputs
 Data Type Name Description
Real y Output with the quotient

7.5.12 Exp

Outputs the exponential (base e) of the input

Description: Block that outputs y=exp(u), where u is an input and exp() is the base-e exponential
function.

7.5.12.1 CDL.Reals.Exp

Symbol

Parameters
N/A

Inputs
 Data Types Name Description
Real u Input for the base e exponential function

Outputs
 Data Type Name Description
Real y Base e exponential value of the input

7.5.13 IntegratorWithReset

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

60

Outputs the integral of the input signal

Description: Block that outputs

𝑦𝑦 = 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + � 𝑢𝑢(𝑠𝑠) 𝑑𝑑𝑠𝑠
𝑠𝑠

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

where ystart is a parameter, tstart is the time at which the integrator started, and u is the input.

The output of the integrator can be reset as follows:

Whenever the input signal trigger changes from false to true, the integrator is reset by setting
ystart to the value of the input signal y_reset_in.

7.5.13.1 CDL.Reals.IntegratorWithReset

Symbol

Parameters
 Data Types Name Default Description

Real k 1 Integrator gain

Note that for Simulation the following is required

Real y_start 0 Initial value of output (= state)

Inputs
 Data Types Name Description
Boolean trigger Input that resets the integrator output when it

becomes true
Real u Input to be integrated
Real y_reset_in Input signal for state to which integrator is re-

set

Outputs
 Data Type Name Description
Real y Value of the integrator

7.5.14 LimitSlewRate

Limit the rate of change of an input.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

61

Description: Block that limits the rate of change of the input by a ramp. This block computes a
threshold for the rate of change of the output y as thr = (u-y)/Td, where Td > 0 is parameter. The
output y is computed as follows:
If thr < fallingSlewRate, then dy/dt = fallingSlewRate,
if thr > raisingSlewRate, then dy/dt = raisingSlewRate,
otherwise, dy/dt = thr.

7.5.14.1 CDL.Reals.LimitSlewRate

Symbol

Parameters
 Data Types Name Default Description

Boolean enable true Set to false to disable
rate limiter

Real fallingSlewRate -raisingSlewRate Speed with which to de-
crease the output [1/s]

Real raisingSlewRate N/A Speed with which to in-
crease the output [1/s]

Real Td raisingSlewRate*10 Derivative Time Con-
stant(s)

Inputs
 Data Types Name Description
Real u Input signal to be rate of change limited

Outputs

 Data Type Name Description
Real y Rate of change limited output signal

7.5.15 Line

Output the value of the input x along a line specified by two points

Description: Block that outputs y = a + b u, where u is an input and the coefficients a and b are determined
so that the line intercepts the two input points specified by the two points x1 and f1, and x2 and f2.

The parameters limitBelow and limitAbove determine whether x1 and x2 are also used to limit the input u.

If the limits are used, then this block requires x1 < x2.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

62

7.5.15.1 CDL.Reals.Line

Symbol

Parameters
 Data Types Name Default Description

Boolean limitAbove true If true, limit input u to be no larger than x2

Boolean limitBelow true If true, limit input u to be no smaller than
x1

Inputs
Data Type Name Description
Real f1 Input for support point f(x1)
Real f2 Input for support point f(x2)
Real u Input for independent variable
Real x1 Input for support point x1, with x1 < x2
Real x2 Input for support point x2, with x2 > x1

Outputs
Data Type Name Description
Real y Output with f(x) along the line specified by

(x1, f1) and (x2, f2)

7.5.16 Log

Output the natural (base e) logarithm of the input (input > 0 required)

Description: Block that outputs y = log(u), where u is an input and log() is the natural logarithm
(base-e) function.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

63

7.5.16.1 CDL.Reals.Log

Symbol

Parameters
N/A

Inputs
Data Type Name Description
Real u Input for base e logarithm

Outputs
Data Type Name Description
Real y Base e logarithm of the input

7.5.17 Log10

Output the base 10 logarithm of the input (input > 0 required)

Description: Block that outputs y = log10(u), where u is an input and log10() is the logarithm
(base-10) function.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

64

7.5.17.1 CDL.Reals.Log10

Symbol

Parameters
N/A

Inputs
 Data Types Name Description
Real u Input for base 10 logarithm

Outputs
 Data Type Name Description
Real y Base 10 logarithm of the input

7.5.18 MatrixGain

Outputs the product of a gain matrix with the input signal vector

Description: Block computes output vector y as the product of the gain matrix K with the input
signal vector u as y = K u. For example,

parameter Real K[:, :] = [0.12, 2; 3, 1.5];

results in:

|y[1] | |0.12 2.00| |u[1]|

| | = | | * | |

|y[2] | |3.00 1.50| |u[2]|

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

65

7.5.18.1 CDL.Reals.MatrixGain

Symbol

Parameters
Data Types Name Default Description

Real K[:, :]

[1, 0; 0, 1]

Gain matrix which is multiplied with the in-
put

Inputs
Data Types Name Description
Real u[nin] Input to be multiplied with the gain matrix

Outputs
Data Type Name Description
Real y[nout] Product of gain matrix times the input

7.5.19 MatrixMax

Output vector of row- or column-wise maximum of the input matrix

Description: If rowMax = true, this block outputs the row-wise maximum of the input matrix u,
otherwise it outputs the column-wise maximum of the input matrix u.

7.5.19.1 CDL.Reals.MatrixMax

Symbol

Parameters
Data Types Name Default Description

Integer nCol Numbers of columns in input matrix

Integer nRow Number of rows in input matrix

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

66

Boolean rowMax true If true, outputs row-wise maximum, otherwise
column-wise

Inputs
Data Types Name Description
Real u[nRow,nCol] Input for the matrix max function

Outputs
Data Type Name Description
Real y[if rowMax

then size(u,
1) else
size(u, 2)]

Output with vector of row- or column-wise
maximum of the input matrix

7.5.20 MatrixMin

Output vector of row- or column-wise minimum of the input matrix

Description: If rowMin = true, this block outputs the row-wise minimum of the input matrix u,
otherwise it outputs the column-wise minimum of the input matrix u.

7.5.20.1 CDL.Reals.MatrixMin

Symbol

Parameters
Data Types Name Default Description

Integer nCol Numbers of columns in input matrix

Integer nRow Number of rows in input matrix

Boolean rowMin true If true, outputs row-wise minimum, other-
wise column-wise

Inputs
Data Types Name Description
Real u[nRow,nCol] Input for the matrix min function

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

67

Outputs
Data Type Name Description
Real y[if

rowMin
then
size(u, 1)
else
size(u, 2)]

Output with vector of row- or colum-wise
minimum of the input matrix

7.5.21 Max

Outputs the maximum of two inputs

Description: Block that outputs y = max(u1, u2), where u1 and u2 are inputs.

7.5.21.1 CDL.Reals.Max

Symbol

Parameters
N/A

Inputs
Data Types Name Description
Real u1 Input to the max function
Real u2 Input to the max function

Outputs
Data Type Name Description
Real y Maximum of the inputs

7.5.21.2 CDL.Integers.Max

Symbol

Parameters
N/A

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

68

Inputs
Data Types Name Description
Integer u1 Input to the max function
Integer u2 Input to the max function

Outputs
Data Type Name Description
Integer y Maximum of the inputs

7.5.22 Min

Outputs the minimum of two inputs

Description: Block that outputs y = min(u1, u2), where u1 and u2 are inputs.

7.5.22.1 CDL.Reals.Min

Symbol

Parameters
N/A

Inputs
Data Types Name Description
Real u1 Input to the min function
Real u2 Input to the min function

Outputs
Data Type Name Description
Real y Minimum of the inputs

7.5.22.2 CDL.Integers.Min

Symbol

Parameters

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

69

N/A

Inputs
Data Types Name Description
Integer u1 Input to the min function
Integer u2 Input to the min function

Outputs
Data Type Name Description
Integer y Minimum of the inputs

7.5.23 Modulo

Output the remainder of first input divided by second input

Description: Block that outputs y=mod(u1/u2), where u1and u2 are inputs. The input u2 must be
non-zero.

7.5.23.1 CDL.Reals.Modulo

Symbol

Parameters
N/A

Inputs

Data Types Name Description
Real u1 Dividend of the modulus function
Real u2 Divisor of the modulus function

Outputs
Data Type Name Description
Real y Modulus u1 mod u2

7.5.24 MovingAverage

Outputs the moving average of an input

Description: Block which outputs the mean value of its input signal as:

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

70

 1 t

y = - ∫ u(s) ds

 δ t-δ

where δ is a parameter that determines the time window over which the input is averaged. For t
< δ seconds, it outputs:

 1 t

y = -------- ∫ u(s) ds

 t-t0+10-10 t0

where t0 is the initial time.

This block can be used to output the moving average of a noisy measurement signal.

7.5.24.1 CDL.Reals.MovingAverage

Symbol

Parameters
Data Types Name Default Description

Real delta Time horizon over which the input is averaged

Inputs
Data Types Name Description
Real u Input to be averaged

Outputs
Data Type Name Description
Real y Moving average of the input

7.5.25 MultiMax

Outputs the maximum element of an input vector

Description: Block that evaluates an input vector u[:] and outputs the maximum value

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

71

7.5.25.1 CDL.Reals.MultiMax

Symbol

Parameters
Data Types Name Default Description

Integer nin 0 Number of input connections

Inputs
Data Types Name Description
Real u[nin] Input to max function

Outputs
Data Type Name Description
Real y Largest element of the input vector

7.5.26 MultiMin

Outputs the minimum element of an input vector

Description: Block that evaluates an input vector u[:] and outputs the minimum value.

7.5.26.1 CDL.Reals.MultiMin

Symbol

Parameters
Data Types Name Default Description

Integer nin 0 Number of input connections

Inputs
Data Types Name Description
Real u[nin] Input to the min function

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

72

Outputs
Data Type Name Description
Real y Smallest element of the input vector

7.5.27 Multiply

Outputs the product of two inputs

Description: Block that outputs y = u1 * u2, where u1 and u2 are inputs.

7.5.27.1 CDL.Reals.Multiply

Symbol

Parameters
N/A

Inputs
Data Types Name Description
Real u1 Input to be multiplied
Real u2 Input to be multiplied

Outputs
Data Type Name Description
Real y Product of the inputs

7.5.27.2 CDL.Integers.Multiply

Symbol

Parameters
N/A

Inputs
Data Types Name Description
Integer u1 Input to be multiplied

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

73

Integer u2 Input to be multiplied

Outputs
Data Type Name Description
Integer y Product of the inputs

7.5.28 MultiplyByParameter

 Elementary Block Names

CDL CXF
CDL.Reals.MultiplyByParameter CXF.Reals.MultiplyByParameter
 CXF.Analogs.MultiplyByParameter

Output the product of a gain value with the input signal

Description: Block that outputs y = k * u, where k is a parameter and u is an input.

7.5.28.1 CDL.Reals.MultiplyByParameter

Symbol

Parameters
Data Types Name De-

fault
Description

Real k N/A Gain value to be multiplied with the input

Inputs

Data Types Name Description
Real u Input to be multiplied with gain

Outputs

Data Type Name Description
Real y Product of the parameter times the input

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

74

7.5.29 MultiSum

Sum of inputs, y = k[1]*u[1] + k[2]*u[2] + ... + k[n]*u[n]

Description: Block that outputs:

𝑦𝑦 = � (𝑘𝑘𝑖𝑖 ∙ 𝑢𝑢𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

where k is a parameter with n elements and u is an input of the same length.

If no connection to the input connector u is present, the output is y=0.

7.5.29.1 CDL.Reals.Multisum

Symbol

Parameters
Data Types Name Default Description

Real k[nin] Fill(1,nin) Input gains

Integer nin 0 Number of input connections

Inputs
Data Types Name Description
Real u[nin] Input to multiplied by gain and then added

Outputs
 Data Type Name Description
Real y Sum of inputs times gains

7.5.29.2 CDL.Integers.Multisum

Symbol

Parameters

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

75

Data Types Name Default Description

Integer k[nin] Fill(1,nin) Input gains

Integer nin 0 Number of input connections

Inputs
Data Types Name Description
Integer u[nin] Input to multiplied by gain and then added

Outputs
 Data Type Name Description
Integer y Sum of inputs times gains

7.5.30 PID

Block that utilizes proportional, proportional integral, or proportional integral derivative
control

Description: PID in the standard form yu = k/r (e(t) + 1 ⁄ Ti ∫ e(τ) dτ + Td d⁄dt e(t)),where yu is the
control signal before output limitation, e(t) = us(t) - um(t) is the control error, with us being the set
point and um being the measured quantity, k is the gain, Ti is the time constant of the integral
term, Td is the time constant of the derivative term, and r is a scaling factor, with default r=1.

Informative Notes:

• The scaling factor should be set to the typical order of magnitude of the range of the er-
ror e. For example, you may set r=100 to r=1000 if the control input is a pressure of a
heating water circulation pump in units of Pascal or leave r=1 if the control input is a
room temperature.

• The units of k are the inverse of the units of the control error, while the units of Ti and Td are

seconds.
• The actual control output is y = min(ymax, max(ymin, y)), where ymin and ymax are limits for the

control signal.

P, PI, PD, or PID action:

Through the parameter controllerType, the block can be configured as P, PI, PD, or PID. The
default configuration is PI.

Reverse or direct action

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

76

Through the parameter reverseActing , the block shall be configured to be reverse or direct acting.
The above standard form is reverse acting, which is the default configuration. For reverse acting,
for a constant set point, an increase in measurement signal u_m decreases the control output sig-
nal y. For a heating coil with a two-way valve, leave reverseActing = true , but for a cooling coil
with a two-way valve, set reverseActing = false.
If reverseActing = false, then the error e above is multiplied by -1.

Anti-windup compensation
Anti-windup compensation is as follows: Instead of the above basic control law, the implementa-
tion is yu = k (e(t) ⁄ r + 1 ⁄ Ti ∫ (-Δy + e(τ) ⁄ r) dτ + Td ⁄ r d⁄dt e(t)),
where the anti-windup compensation Δy is Δy = (yu - y) ⁄ (k Ni),
where Ni > 0 is the time constant for the anti-windup compensation. To accelerate the anti-windup,
decrease Ni.

Informational Notes:

The anti-windup term (-Δy + e(τ) ⁄ r) shows that the range of the typical control error r should be
set to a reasonable value so that e(τ) ⁄ r = (us(τ) - um(τ)) ⁄ r has order of magnitude one, and hence
the anti-windup compensation should work well.

Reset of the block output
This block implements an integrator anti-windup. Therefore, for most applications, the block out-
put does not need to be reset. However, if the block is used in conjunction with equipment that is
being switched on, better control performance may be achieved by resetting the PID block output
when the equipment is switched on. This is the case in situations where the equipment control input
should continuously increase as a variable speed drive of a motor that should continuously in-
crease the speed. In this case, the function PIDWithReset that can reset the output should be used.

Approximation of the derivative term
The derivative of the control error d ⁄ dt e(t) is approximated using d⁄dt x(t) = (e(t)-x(t)) Nd ⁄ Td, and
d⁄dt e(t) ≈ Nd (e(t)-x(t)), where x(t) is an internal state.

Guidance for tuning gains
The parameters of the block can be manually adjusted by performing closed loop tests and using
the following strategy:

1. Set very large limits, e.g., set ymax = 1000.
2. Select a P-block and manually enlarge the parameter k (the total gain) until the closed-

loop response cannot be improved any more.
3. Select a PI-block and manually adjust the parameters k and Ti (the time constant of the

integrator). The first value of Ti can be selected such that it is in the order of the time
constant of the oscillations occurring with the P-controller. If, e.g., oscillations in the order
of 100 seconds occur in the previous step, start with Ti=1/100 seconds.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

77

4. If you want to make the reaction of the control loop faster (but probably less robust against
disturbances and measurement noise) select a PID-block and manually adjust parame-
ters k, Ti, Td (time constant of derivative block).

5. Set the limits yMax and yMin according to your specification.
6. Perform simulations such that the output of the PID block goes in its limits.

Tune Ni (Ni Ti is the time constant of the anti-windup compensation) such that the input to
the limiter block (= lim.u) goes quickly enough back to its limits. If Ni is decreased, this
happens faster. If Ni is very large, the anti-windup compensation is not effective.

7.5.30.1 CDL.Reals.PID

Symbol

Parameters

Data Types Name De-
fault

Description

Configuration
CDL.Types.Simple-
Controller

control-
lerType

PI Type of controller (P, PI, PD, PID)

Real r 1 Typical range of control error, used for scaling
the control error

Boolean reverseActing true Set to true for reverse acting, or false for direct
acting control action

Control gains
Real k 1 Gain of controller
Real Ti 0.5 Time constant of integrator block [s]
Real Td 0.1 Time constant of derivative block [s]
Limits
Real yMax 1 Upper limit of output
Real yMin 0 Lower limit of output
Advanced
Integrator anti-windup
Real Ni 0.9 Ni*Ti is time constant of anti-windup compen-

sation
Derivative block
Real Nd 10 The higher Nd, the more ideal the derivative

block

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

78

Initialization
Real xi_start 0 Initial value of integrator state
Real yd_start 0 Initial value of derivative output

Informational Note: It is recommended that at minimum the parameters for gains and limits be
configurable while the block is running.

Inputs
Data Types Name Description
Real u_m Measurement input signal
Real u_s Setpoint input signal

Outputs
Data Type Name Description
Real y Connector of output signals (to actuator)

7.5.31 PIDWithReset

Block that utilizes proportional, proportional integral, or proportional integral derivative
control with reset

Description: PID block in the standard form yu = k/r (e(t) + 1 ⁄ Ti ∫ e(τ) dτ + Td d⁄dt e(t)),where yu is
the control signal before output limitation, e(t) = us(t) - um(t) is the control error, with us being the
set point and um being the measured quantity, k is the gain, Ti is the time constant of the integral
term, Td is the time constant of the derivative term, and r is a scaling factor, with default r=1.

Informational Notes:

• The scaling factor should be set to the typical order of magnitude of the range of the er-
ror e. For example, you may set r=100 to r=1000 if the control input is a pressure of a
heating water circulation pump in units of Pascal or leave r=1 if the control input is a
room temperature.

• Note that the units of k are the inverse of the units of the control error, while the units

of Ti and Td are seconds.

• The actual control output is y = min(ymax, max(ymin, y)), where ymin and ymax are limits for the
control signal.

P, PI, PD, or PID action:

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

79

Through the parameter controllerType , the block can be configured as P, PI, PD, or PID block.
The default configuration is PI.

Reverse or direct action
Through the parameter reverseActing, the block can be configured to be reverse or direct acting.
The above standard form is reverse acting, which is the default configuration. For a reverse acting
block, for a constant set point, an increase in measurement signal u_m decreases the control output
signal y (Montgomery and McDowall, 2008). Thus,
for a heating coil with a two-way valve, leave reverseActing = true , but
for a cooling coil with a two-way valve, set reverseActing = false.
If reverseActing = false, then the error e above is multiplied by -1.

Anti-windup compensation
The block anti-windup compensation is as follows: Instead of the above basic control law, the
implementation is yu = k (e(t) ⁄ r + 1 ⁄ Ti ∫ (-Δy + e(τ) ⁄ r) dτ + Td ⁄ r d⁄dt e(t)),
where the anti-windup compensation Δy is Δy = (yu - y) ⁄ (k Ni),
where Ni > 0 is the time constant for the anti-windup compensation. To accelerate the anti-windup,
decrease Ni.

Informational Notes:

The anti-windup term (-Δy + e(τ) ⁄ r) shows that the range of the typical control error r should be
set to a reasonable value so that e(τ) ⁄ r = (us(τ) - um(τ)) ⁄ r
has order of magnitude one, and hence the anti-windup compensation should work well.

Reset of the block output
This block implements an integrator anti-windup. Therefore, for most applications, the block out-
put does not need to be reset.

Reset of the block output
Whenever the value of boolean input signal trigger changes from false to true, the block output is reset by set-
ting y to the value of the parameter y_reset.

Approximation of the derivative term
The derivative of the control error d ⁄ dt e(t) is approximated using d⁄dt x(t) = (e(t)-x(t)) Nd ⁄ Td,
and d⁄dt e(t) ≈ Nd (e(t)-x(t)), where x(t) is an internal state.

Guidance for tuning the control gains:
The parameters of the block can be manually adjusted by performing closed loop tests (= block
+ plant connected) and using the following strategy:

1. Set very large limits, e.g., set ymax = 1000.
2. Select a P-block and manually enlarge the parameter k (the total gain of the block) until

the closed-loop response cannot be improved any more.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

80

3. Select a PI-block and manually adjust the parameters k and Ti (the time constant of the
integrator). The first value of Ti can be selected such that it is in the order of the time
constant of the oscillations occurring with the P-block. If, e.g., oscillations in the order
of 100 seconds occur in the previous step, start with Ti=1/100 seconds.

4. If you want to make the reaction of the control loop faster (but probably less robust against
disturbances and measurement noise), select a PID-block and manually adjust parame-
ters k, Ti, Td (time constant of derivative block).

5. Set the limits yMax and yMin according to your specification.
6. Perform simulations such that the output of the PID block goes in its limits.

Tune Ni (Ni Ti is the time constant of the anti-windup compensation) such that the input to
the limiter block (= lim.u) goes quickly enough back to its limits. If Ni is decreased, this
happens faster. If Ni is very large, the anti-windup compensation is not effective.

7.5.31.1 CDL.Reals.PIDWithReset

Symbol

Parameters
Data Types Name De-

fault
Description

Configuration
CDL.Types.Simple-
Controller

controllerType PI Type of controller (P, PI, PD, PID)

Real r 1 Typical range of control error, used
for scaling the control error

Boolean reverseActing true Set to true for reverse acting, or false
for direct acting control action

Control gains
Real k 1 Gain of controller
Real Ti 0.5 Time constant of integrator block [s]
Real Td 0.1 Time constant of derivative block [s]
Limits
Real yMax 1 Upper limit of output
Real yMin 0 Lower limit of output
Integrator reset

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

81

Real y_reset xi_start Value to which the controller output
is reset if the boolean trigger has a
rising edge

Advanced
Integrator anti-windup
Real Ni

Ni*Ti is time constant of anti-windup
compensation

Derivative block
Real Nd 10 The higher Nd, the more ideal the de-

rivative block
Initialization
Real xi_start 0 Initial value of integrator state
Real yd_start 0 Initial value of derivative output

Informational Note: It is recommended that at minimum the parameters for gains and limits be
configurable while the block is running.

Inputs
Data Types Name Description
Boolean trigger Resets the controller output when trigger becomes true

Real u_m Connector of the measurement input signal
Real u_s Connector for the setpoint input signal

Outputs
Data Type Name Description
Real y Connector of output signals (to actuator)

7.5.32 Round

Rounds an input to a specific number of digits.

Description: Block that outputs the input after rounding it to n digits.

For example,

• set n = 0 to round to the nearest integer,

• set n = 1 to round to the next decimal point, and

• set n = -1 to round to the next multiple of ten.
Hence, the block outputs

y = floor(u*(10^n) + .5)/10^n) for u > 0

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

82

y = ceil(u*(10^n) - .5)/10^n) for u < 0

7.5.32.1 CDL.Reals.Round

Symbol

Parameters
 Data Types Name Default Description

Real n Number of digits being round to

Inputs
Data Types Name Description
Real u Input to be rounded

Outputs
Data Type Name Description
Real y Output with rounded input

7.5.33 Sin

Outputs the sine of an input

Description: Block that outputs y = sin(u), where u is an input.

7.5.33.1 CDL.Reals.Sin

Symbol

Parameters
N/A

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

83

Inputs
Data Types Name Description
Real u Input for the Sine function

Outputs
Data Type Name Description
Real y Sine of the input

7.5.34 Sort

Sort elements of input vector in ascending or descending order

Description: Block that sorts the elements of the input signal u. If the parameter ascending = true,
then the output signal y satisfies yi <= yi+1 for all i ∈ {1, ..., n-1}. Otherwise, it satisfies yi >= yi+1
for all i ∈ {1, ..., n-1}. The output signal yIdx contains the indices of the sorted elements with
respect to the input vector u.

Informational Notes:
Note that this block is used for input signals u that are time sampled. In simulation, numerical
noise from a nonlinear solver or from an implicit time integration algorithm may cause the simu-
lation to stall. Numerical noise can be present if an input depends on a state variable or a quantity
that requires an iterative solution, such as a temperature or a mass flow rate of an HVAC system.
In real controllers, measurement noise may cause the output to change frequently.

This block may for example be used in a variable air volume flow controller to access the position
of the dampers that are most open.

7.5.34.1 CDL.Reals.Sort

Symbol

Parameters
Data Types Name Default Description

Boolean ascending true Set to true if ascending order, otherwise order is
descending

Integer nin n/a Number of input connectors

Inputs

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

84

Data Types Name Description
Real u[nin] Input(s) to be sorted

Outputs
Data Type Name Description
Real y[nin] Outpur of sorted inouts
Integer yIdx[nin] Indices of the sorted vector with respect to

the original vector

7.5.35 Sqrt

Outputs the square root of an input (input > = 0 required)

Description: Block which outputs the square root of the input y = sqrt(u), where u is an input. The
input u shall be non-negative.

7.5.35.1 CDL.Reals.Sqrt

Symbol

Parameters
N/A

Inputs
Data Types Name Description
Real u Input to square root function

Outputs
Data Type Name Description
Real y Output with square root of the input

7.5.36 Subtract

Outputs the difference of two inputs

Description: Block that outputs y as the difference of the two input signals u1 and u2,
 y = u1 - u2

7.5.36.1 CDL.Reals.Subtract

Symbol

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

85

Parameters
N/A

Inputs
Data Types Name Description
Real u1 Input with minuend
Real u2 Input with subtrahend

Outputs

Data Type Name Description
Real y Output with difference

7.5.36.2 CDL.Integers.Subtract

Symbol

Parameters
N/A

Inputs
Data Types Name Description
Integer u1 Input with minuend
Integer u2 Input with subtrahend

Outputs

Data Type Name Description
Integer y Output with difference

7.5.37 Tan

Outputs the tangent of an input

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

86

Description: Block that outputs y = tan(u), where u is an input.

7.5.37.1 CDL.Reals.Tan

Symbol

Parameters
N/A

Inputs
 Data Types Name Description
Real u Input for the tangent function

Outputs
 Data Type Name Description
Real y Tangent of the input

7.5.38 And

Logical 'and': y = u1 and u2

Description: Block that outputs true if all inputs are true, else it outputs false

7.5.38.1 CDL.Logical.And

Symbol

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

87

Parameters
N/A

Inputs
Data Types Name Description
Boolean u1 Input signal for logical 'and'
Boolean u2 Input signal for logical 'and'

Outputs
Data Type Name Description
Boolean y Outputs true if u1 and u2 are both true

7.5.39 Change

Output whether the input changes values, increases or decreases

Description: For package of type Logical, if the input has either a rising edge from false to true or
a falling edge from true to false, the block outputs true. Otherwise, the output is false. For package
of type Integer, if the input increases or decreases value, the block outputs true. Otherwise, the
output is false. Different from the package of type Logical, the block in package of type Integer
has two additional outputs that indicate the direction of change.

7.5.39.1 CDL.Logical.Change

Symbol

Parameters
Data Types Name Default Description

Boolean pre_u_start (false) For simulation, this parameter is used
as the start value of pre(u).

Inputs
Data Types Name Description
Boolean u Input to be monitored for a change

Outputs

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

88

Data Type Name Description
Boolean y Output which is true when the input changes

7.5.39.2 CDL.Integer.Change

Symbol

Parameters
Data Types Name Default Description

Integer pre_u_start (0) For simulation, this parameter is used
as the start value of pre(u).

Inputs
Data Types Name Description
Integer u Input to be monitored for a change in value

Outputs
Data Type Name Description
Boolean down Output that is true when the input decreased

its value
Boolean up Output that is true when the input increased

its value
Boolean y Output that is true when the input changes its

value

7.5.40 Edge

Output y is true, if the input u has a rising edge (y = edge(u))

Description: Block which outputs true if the Boolean input has a rising edge from false to true.
Otherwise, the output is false.

7.5.40.1 CDL.Logical.Edge

Symbol

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

89

Parameters

 Data Types Name Default Description

Boolean pre_u_start false For simulation, this parameter is used as the
start value of pre(u).

Inputs
Data Types Name Description
Boolean u Input to be monitored

Outputs
Data Type Name Description
Boolean y Outputs true when the input switches to true

7.5.41 FallingEdge

Output y is true, if the input u has a falling edge (y = edge(not u))

Description: Block which outputs true if the Boolean input has a falling edge from true to false.
Otherwise, the output is false.

7.5.41.1 CDL.Logical.FallingEdge

Symbol

Parameters
 Data Types Name De-

fault
Description

Boolean pre_u_start false For simulation, this parameter is used as the start
value of pre(u).

Inputs

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

90

Data Types Name Description
Boolean u Input to be monitored

Outputs
Data Type Name Description
Boolean y Outputs true when the input switches to false

7.5.42 Latch

Maintains true until cleared.

Description: Block that generates a true output when the latch input u rises from false to true, pro-
vided that the clear input clr is false or also became at the same time false. The output re-
mains true until the clear input clr rises from false to true.

If the clear input clr is true, the output y switches to false (if it was true) and it remains false, re-
gardless of the value of the latch input u.

At initial time, if clr = false, then the output will be y = u. Otherwise, it will be y=false (because
the clear input clr is true).

7.5.42.1 CDL.Logical.Latch

Symbol

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

91

Parameters
N/A

Inputs
Data Types Name Description
Boolean clr Clear input
Boolean u Latch input

Outputs
Data Type Name Description
Boolean y Output with latched value

7.5.43 MultiAnd

Logical MultiAnd, y = u[1] and u[2] and u[3] and ...

Description: Block which outputs y = true if and only if all elements of the input vector u are
true. If no connection to the input connector u is present, the output is y=false.

7.5.43.1 CDL.Logical.MultiAnd

Symbol

Parameters
Data Types Name De-

fault
Description

Integer nin N/A Number of input connections

Inputs
 Data Types Name Description
Boolean u[nin] Inputs

Outputs
Data Type Name Description
Boolean y Output with true if all inputs are true

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

92

7.5.44 MultiOr

 Elementary Block Names

CDL CXF
CDL.Logical.MultiOr CXF.Logical.MultiOr

Logical MultiOr, y = u[1] or u[2] or u[3] or ...

Description: Block which outputs y=true if any element of the input vector u is true. If no connec-
tion to the input connector u is present, the output is y=false.

7.5.44.1 CDL.Logical.MultiOr

Symbol

Parameters
Data Types Name De-

fault
Description

Integer nin N/A Number of input connections

Inputs
Data Types Name Description
Boolean u[nin] Inputs

Outputs
Data Type Name Description
Boolean y Output with true if at least one input is true

7.5.45 Nand

Logical 'nand': y = not (u1 and u2)

Description: Block which outputs true if at least one input is false. Otherwise, the output is false.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

93

7.5.45.1 CDL.Logical.Nand

Symbol

Parameters
N/A

Inputs
Data Types Name Description
Boolean u1 Input1 for 'nand'
Boolean u2 Input2 for 'nand'

Outputs
Data Type Name Description
Boolean y Output with false if both inputs are true

7.5.46 Nor

Logical 'nor': y = not (u1 or u2)

Description: Block which outputs true if none of the inputs is true. Otherwise, the output is false.

7.5.46.1 CDL.Logical.Nor

Symbol

Parameters
N/A

Inputs
Data Types Name Description
Boolean u1 Input1 for 'nor'
Boolean u2 Input2 for 'nor'

Outputs

Data Type Name Description

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

94

Boolean y Output with false if at least one of the inputs
is true

7.5.47 Not

Logical not

Description: Block which outputs true if the input is false, and false if the input is true.

7.5.47.1 CDL.Logical.Not

Symbol

Parameters
N/A

Inputs
 Data Types Name Description
Boolean u Input to be negated

Outputs
 Data Type Name Description
Boolean y Output with negated input

7.5.48 Or

 Elementary Block Names

CDL CXF
CDL.Logical.Or CXF.Logical.Or

Logical 'or': y = u1 or u2

Description: Block which outputs true if at least one input is true. Otherwise, the output is false.

7.5.48.1 CDL.Logical.Or

Symbol

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

95

Parameters
N/A

Inputs
Data Types Name Description
Boolean u1 Input1 for logical 'or'
Boolean u2 Input2 for logical 'or'

Outputs
Data Type Name Description
Boolean y Output with true if at least one of the inputs

is true

7.5.49 Proof

Verify two boolean inputs

Description: Block that compares a boolean set point u_s with a measured signal u_m and pro-
duces two outputs that may be used to raise alarms about malfunctioning equipment.

The block sets the output yLocFal = true if the set point is u_s = true but the measured signal is
locked at false, i.e., u_m = false. Similarly, the block sets the output yLocTru = true if the set point
is u_s = false but the measured signal is locked at true, i.e., u_m = true.

Informational Notes:

To use this block, proceed as follows: Set the parameter feedbackDelay ≥ 0 to specify how long
the feedback of the controlled device is allowed to take to report its measured operational sig-
nal u_s after a set point change u_m. Set the parameter debounce ≥ 0 to specify how long the
measured signal u_m need to remain constant for it to be considered stable. Connect the inputs
for the set point u_s and the measured signal u_m to the output signals that need to be checked. If
either output is true, raise an alarm, by connecting to the outputs of this block.

Any output being true indicates a problem.

The block has two timers that each start whenever the corresponding input changes. One timer,
called feedbackDelay+debounce timer, starts whenever the set point u_s changes, and it runs for
a time equal to feedbackDelay+debounce. The other timer, called debounce timer, starts when-
ever the measured signal u_m changes, and it runs for a time equal to debounce. The block starts
verifying the inputs whenever the feedbackDelay+debounce timer lapsed, or the debounce timer
lapsed, (and hence the measurement is stable,) whichever is first.

Both outputs being true indicates that the measured signal u_m is not stable within feedback-
Delay+debounce time. Exactly one output being true indicates that the measured signal u_m is
stable, but u_s ≠ u_m. In this case, the block sets yLocFal = true if u_s = true (the measured signal
is locked at false), or it sets yLocTru = true if u_s = false (the measured signal is locked at true).

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

96

Therefore, exactly one output being true can be interpreted as follows: Suppose true means on
and false means off.

Then, yLocTru = true indicates that an equipment is locked in operation mode but is commanded
off; and similarly, yLocFal = true indicates that it is locked in off mode when it is commanded on.

7.5.49.1 CDL.Logical.Proof

Symbol

Parameters
Data Types Name Default Description

Real debounce Time during which input must remain un-
changed for signal to be considered valid and
used in checks [seconds]

Real feedbackDelay Delay after which the two inputs are checked
for equality once they become valid [seconds]

Inputs
Data Types Name Description
Boolean u_m Measured status
Boolean u_s Commanded status setpoint

Outputs
Data Types Name Description
Boolean yLocFal Output with true if the measured input is

locked to false even after the setpoint has
changed to true

Boolean yLocTru Output with true if the measured input is
locked to true even after the setpoint has
changed to false

7.5.50 Switch

Switch between two inputs

Description: Block which outputs one of two input signals based on a Boolean input signal.

If the input signal u2 is true, the block outputs y = u1. Otherwise, it outputs y = u3.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

97

7.5.50.1 CDL.Reals.Switch

Symbol

Parameters
N/A

Inputs
Data Types Name Description
Real u1 Input u1
Boolean u2 Boolean switch input signal, if true, y=u1,

else y=u3
Real u3 Input u3

Output
Data Type Name Description
Real y Output with u1 if u2 is true, else u3

7.5.50.2 CDL.Integers.Switch

Symbol

Parameters
N/A

Inputs
Data Types Name Description
Integer u1 Input u1
Boolean u2 Boolean switch input signal, if true, y=u1,

else y=u3
Integer u3 Input u3

Output
Data Type Name Description
Integer y Output with u1 if u2 is true, else u3

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

98

7.5.50.3 CDL.Logical.Switch

Symbol

Parameters
N/A

Inputs
Data Types Name Description
Boolean u1 Input u1
Boolean u2 Boolean switch input signal, if true, y=u1,

else y=u3
Boolean u3 Input u3

Output
Data Type Name Description
Boolean y Output with u1 if u2 is true, else u3

7.5.51 Toggle

Toggles output value whenever its input turns true

Description: Block that generates a true output when toggle input u rises from false to true, pro-
vided that the clear input clr is false or also became at the same time false. The output re-
mains true until

• the toggle input u rises from false to true again, or
• the clear input clr rises from false to true.

If the clear input clr is true, the output y switches to false (if it was true) and it remains false, re-
gardless of the value of the toggle input u.

At initial time, if clr = false, then the output will be y = u. Otherwise, it will be y=false (because
the clear input clr is true).

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

99

7.5.51.1 CDL.Logical.Toggle

Symbol

Parameters
N/A

Inputs
Data Types Name Description
Boolean clr Clear input
Boolean u Toggle Input

Outputs
Data Type Name Description
Boolean y Output with toggled signal

7.5.52 VariablePulse

Generate boolean pulse with the width specified by input

Description: The output of this block is a pulse with a constant period and a width as obtained
from the input 0 ≤ u ≤ 1, which is the width relative to the period.
 The block produces the following outputs:

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

100

• If u = 0, the output y remains false.

• If 0 < u < 1, the output y will be a boolean pulse with the period specified by the parame-
ter period and the width set to u*period.

• If u = 1, the output y remains true.
 When the input u changes by more than deltaU and the output has been holding constant for
more than minimum holding time minTruFalHol, the output will change to a new pulse with
width equal to u*period.

7.5.52.1 CDL.Logical.VariablePulse

Symbol

Parameters
 Data Type Name Default Description

Real deltaU .01 Increment of u that triggers re-com-
putation of output

Real minTruFalHol .01*period Minimum time to hold true or
false [s]

Real period Time for one pulse period [s]

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

101

Inputs
Data Type Name Description
Real u Ratio of the period that the output should be

true [true=1]

Outputs
Data Type Name Description
Boolean y Boolean pulse when input is greater than zero

7.5.53 Xor

Logical 'xor': y = u1 xor u2

Description: Block which outputs true if exactly one input is true. Otherwise, the output is false.

7.5.53.1 CDL.Logical.Xor

Symbol

Parameters
N/A

Inputs
Data Type Name Description
Boolean u1 Input1 for logical 'xor'
Boolean u2 Input2 for logical 'xor'

Outputs
Data Type Name Description
Boolean y Output with u1 xor u2

7.5.54 DewPoint_TDryBulPhi

Block to compute the dew point temperature based on relative humidity.

Description:

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

102

Dew point temperature calculation for moist air above freezing temperature.

The correlation used in this block is valid for dew point temperatures between 0°C and 93°C. It is
the correlation from 2009 ASHRAE Handbook Fundamentals, p. 1.9, Equation 39.

7.5.54.1 CDL.Psychrometrics.DewPoint_TDryBulPhi

Symbol

Parameters
N/A

Inputs
 Data Type Name Description
Real phi Relative Humidity
Real TDryBul Dry bulb temperature

Outputs
 Data Type Name Description
Real TDewPoi Dewpoint Temperature

7.5.55 SpecificEnthalpy_TDryBulPhi

Block to compute the specific enthalpy based on relative humidity

Description:

This block computes the specific enthalpy for a given dry bulb temperature, relative air humidity,
and atmospheric pressure. The specific enthalpy is zero if the temperature is 0°C and if there is no
The correlation used in this model is from the 2009 ASHRAE Handbook Fundamentals, p. 1.9,
Equation 32.

7.5.55.1 CDL.Psychrometrics.SpecificEnthalpy_TDryBulPhi

Symbol

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

103

Parameters
Data Type Name Default Description

Real pAtm 101325

Atmospheric pressure [pascals]

Inputs

Data Type Name Description
Real phi Relative Humidity
Real TDryBul Dry bulb temperature

Outputs

Data Type Name Description
Real h Specific Enthalpy

7.5.56 WetBulb_TDryBulPhi

Block to compute the wet bulb temperature based on relative humidity.

Description:

This block computes the wet bulb temperature for a given dry bulb temperature, relative air hu-
midity, and atmospheric pressure. See appendix for links to reference code.

7.5.56.1 CDL.Psychrometrics.WetBulb_TDryBulPhi

Symbol

Parameters
N/A

Inputs
Data Type Name Description
Real TDryBul Dry bulb temperature
Real phi Relative humidity

Outputs
Data Type Name Description

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

104

Real TWetBul Wet bulb temperature

7.5.57 Equal

Output y is true if input u1 is equal to input u2

Description: Block which outputs true if the input u1 is equal to the input u2. Otherwise, the out-
put is false.

7.5.57.1 CDL.Integers.Equal

Symbol

Parameters
N/A

Inputs
Data Type Name Description
Integer u1 Input to be checked for equality with other in-

put
Integer u2 Input to be checked for equality with other in-

put

Outputs
Data Type Name Description
Boolean y Outputs that is true if the two inputs are

equal, and false otherwise

7.5.58 Greater

Output y is true, if input u1 is greater than input u2

Description: Block which outputs true if the input u1 is greater than input u2. Otherwise, the
output is false.

7.5.58.1 CDL.Reals.Greater

Symbol

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

105

Parameters
 Data Type Name Default Description

Real h 0 Hysteresis

Boolean pre_y_start false Value of pre(y) at initial time

Note: The parameter h ≥ 0 is used to specify a hysteresis. For any h ≥ 0, the output switches to
true if u1 > u2, and it switches to false if u1 ≤ u2 - h. Note that in the special case of h = 0, this
produces the output y=u1 > u2.
To disable hysteresis, set h=0.

Inputs
Data Type Name Description
Real u1 First input u1
Real u2 Second input u2

Outputs
Data Type Name Description
Boolean y Outputs true if u1 is greater than u2

7.5.58.2 CDL.Integers.Greater

Symbol

Parameters
N/A

Inputs
Data Type Name Description
Integer u1 First input u1
Integer u2 Second input u2

Outputs

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

106

Data Type Name Description
Boolean y Outputs true if u1 is greater than u2

7.5.59 GreaterEqual

Output y is true, if input u1 is greater than or equal to input u2.

Description: Block which outputs true if the input u1 is equal to or greater than the input u2.
Otherwise, the output is false.

7.5.59.1 CDL.Integers.GreaterEqual

Symbol

Parameters
N/A

Inputs
Data Type Name Description
Integer U1 First input u1
Integer u2 Second input u2

Outputs
Data Type Name Description
Boolean y Outputs true if u1 is greater or equal than u2

7.5.60 GreaterEqualThreshold

Output y is true, if input u1 is greater than or equal to threshold.

Description: Block which outputs true if the input is greater than or equal to the parameter t.
Otherwise, the output is false.

7.5.60.1 CDL.Integers.GreaterEqualThreshold

Symbol

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

107

Parameters
 Data Types Name Default Description

Integer t 0 Threshold against which the input
is compared to

Inputs
 Data Type Name Description
Integer u Input to be compared against the threshold

Outputs
 Data Type Name Description
Boolean y Outputs true if u is greater or equal than the

threshold

7.5.61 GreaterThreshold

Output y is true, if input u is greater than a threshold

Description: Block which outputs true if the input is greater than the parameter t. Otherwise, the
output is false.

7.5.61.1 CDL.Reals.GreaterThreshold

Symbol:

Parameters
Data Types Name Default Description

Real h 0 Hysteresis

Boolean pre_y_start false Value of pre(y) at initial time

Real t 0 Threshold comparison

Note: The parameter h ≥ 0 is used to specify a hysteresis. For any h ≥ 0, the output switches to
true if u > t, where t is the threshold, and it switches to false if u ≤ t - h. Note that in the special
case of h = 0, this produces the output y=u > t.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

108

 To disable hysteresis, set h=0.

Inputs
Data Type Name Description
Real u Input to be compared against the threshold

Outputs
Data Type Name Description
Boolean y Outputs true if u is greater than the threshold

with hysteresis

7.5.61.2 CDL.Integers.GreaterThreshold

Symbol:

Parameters
Data Types Name Default Description

Integer t 0 Threshold comparison

Inputs
Data Type Name Description
Integer u Input to be compared against the threshold

Outputs
Data Type Name Description
Boolean y Outputs true if u is greater than the threshold

with hysteresis

7.5.62 Hysteresis

Transform Real to Boolean signal with Hysteresis.

Description: Block that transforms a Real input signal into a Boolean output signal:

• When the output was false and the input becomes greater than the parameter uHigh, the
output switches to true.

• When the output was true and the input becomes less than the parameter uLow, the output
switches to false.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

109

 The start value of the output is defined via parameter pre_y_start (= value of pre(y) at initial time).
The default value of this parameter is false.

7.5.62.1 CDL.Reals.Hysteresis

Symbol

Parameters:
 Data Type Name Default Description

Boolean pre_y_start false Value of pre(y) used at initial time

Real uHigh 0 If y=false and u>uHigh, switch to
y=true

Real uLow 0 If y=true and u<uLow, switch to
y=false

Inputs
Data Type Name Description
Real u Input to be compared against hysteresis val-

ues

Outputs
Data Type Name Description
Boolean y Output value of comparison

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

110

7.5.63 Less

Output y is true, if input u1 is less than input u2

Description: Block which outputs true if the input u1 is less than input u2. The Real or Analog
version of this block has an optional hysteresis h. Hysteresis does not apply for the Integer version
of this block.

The parameter h ≥ 0 is used to specify a hysteresis. If h ≠ 0, then the output switches to true if u1 >
u2, and it switches to false if u1 < u2 - h. If h = 0, the output is y=u1 > u2.

Informational Note:
Enabling hysteresis can avoid frequent switching. Adding hysteresis is recommended in real con-
trollers to guard against sensor noise, and in simulation, to guard against numerical noise. Nu-
merical noise can be present if an input depends on a state variable or a quantity that requires an
iterative solution, such as a temperature or a mass flow rate of an HVAC system. To disable hys-
teresis, set h=0.

7.5.63.1 CDL.Reals.Less

Symbol

Parameters
 Data Type Name Default Description

Real h 0 Hysteresis

Real Pre_y_start false Value of pre(y) used at initial
time

Inputs
Data Type Name Description
Real u1 First input u1
Real u2 Second input u2

Outputs
Data Type Name Description
Boolean y Outputs true if u1 is less than u2

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

111

7.5.63.2 CDL.Integers.Less

Symbol

Parameters
N/A

Inputs
Data Type Name Description
Integer u1 First input u1
Integer u2 Second input u2

Outputs
Data Type Name Description
Boolean y Outputs true if u1 is less than u2

7.5.64 LessEqual

Output y is true, if input u1 is less than or equal to input u2

Description: Block outputs true if the input u1 is equal to or less than the input u2. Otherwise, the
output is false

7.5.64.1 CDL.Integers.LessEqual

Symbol

Parameters
N/A

Inputs
Data Type Name Description
Integer U1 First input
Integer u2 Second input

Outputs
Data Type Name Description

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

112

Boolean y Outputs true if u1 is less or equal than u2

7.5.65 LessEqualThreshold

 Output y is true, if input u is less than or equal to threshold

Description: Block which outputs true if the input is less than or equal to the parameter t. Other-
wise, the output is false.

7.5.65.1 CDL.Integers.LessEqualThreshold

Symbol

Parameters
Data Type Name Default Description

Integer t 0 Threshold for comparison

Inputs
Data Types Name Description
Integer u Input to be compared

Outputs
Data Type Name Description
Boolean y Outputs true if u is less or equal than the

threshold

7.5.66 LessThreshold

Output y is true, if input u is less than a threshold.

Description: Block which outputs true if the input is less than the parameter t. Otherwise, the out-
put is false.

7.5.66.1 CDL.Reals.LessEqualThreshold

Symbol:

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

113

Parameters
Data Type Name Default Description

Real t 0 Threshold for comparison

Real h 0 Hysteresis

Note: The parameter h ≥ 0 is used to specify a hysteresis. For any h ≥ 0, the output switches to
true if u < t, where t is the threshold, and it switches to false if u ≥ t + h. Note that in the special
case of h = 0, this produces the output y=u < t.

Inputs
Data Type Name Description
Real u Input to be compared against the threshold

Outputs
Data Type Name Description
Boolean y Outputs true if u is less than the threshold

with hysteresis

7.5.66.2 CDL.Integers.LessEqualThreshold

Symbol:

Parameters
Data Type Name Default Description

Integer t 0 Threshold for comparison

Inputs
Data Type Name Description

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

114

Integer u Input to be compared against the threshold

Outputs
Data Type Name Description
Boolean y Outputs true if u is less than the threshold

7.5.67 Limiter

Limit the range of an input

Description: Block that outputs y = min(uMax, max(uMin, u)), where u is an input
and uMax and uMin are parameters.

If uMax < uMin, an error occurs.

7.5.67.1 CDL.Reals.Limiter

Symbol:

Parameters
Data Types Name Default Description

Real uMax N/A Upper limit of input

Real uMin N/A Lower limit of input

Inputs
Data Type Name Description
Real u Input to be limited

Outputs
 Data Type Name Description
Real y Limited value of input

7.5.68 OnCounter

Increment the output if the input switches to true

Description: Block which outputs how often the trigger input changed to true since the last invo-
cation of reset.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

115

This block may be used as a counter. Its output y starts at the parameter value y_start. Whenever
the input signal trigger changes to true, the output is incremented by 1. When the input re-
set changes to true, then the output is reset to y = y_start. If both inputs trigger and reset change
simultaneously, then the output is y = y_start.

7.5.68.1 CDL.Integers.OnCounter

Symbol:

Parameters
Data Type Name Default Description

Integer y_start 0 Initial and reset value of y if in-
put reset switches to true

Inputs
Data Type Name Description
Boolean reset Reset, when true, the counter is set to y_start
Boolean trigger Trigger, when set to true, the counter in-

creases

Outputs
Data Type Name Description
Integer y Counter value

7.5.69 Pre

Breaks algebraic loops by an infinitesimal small-time delay (y = pre(u): event iteration con-
tinues until u = pre(u)). Typically used in simulation and not in control.

Description: This block delays the Boolean input by an infinitesimal small-time delay and there-
fore, breaks algebraic loops. In a network of logical blocks, in every closed connection loop, at
least one logical block must have a delay, since algebraic systems of Boolean equations are not
solvable.

This block returns the value of the input signal u from the last event iteration. The event iteration
stops once both values are identical, i.e., if u = pre(u).

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

116

7.5.69.1 CDL.Logical.Pre

Symbol:

Parameters
Data Type Name Default Description

Boolean pre_u_start false Start value of pre(u) at initial time

Inputs
Data Type Name Description
Boolean u Input to be delayed by one event iteration

Outputs
Data Type Name Description
Boolean y Input delayed by one event iteration

7.5.70 Ramp

Limit the changing rate of the input.

Description:
Block that limits the rate of change of the input u by a ramp if the boolean input active is true,
otherwise the block outputs y = u.

This block computes a threshold for the rate of change between input u and output y as thr = (u-
y)/Td, where Td > 0 is a parameter. The output y is computed as follows:

• If thr < fallingSlewRate, then dy/dt = fallingSlewRate,
• if thr > raisingSlewRate, then dy/dt = raisingSlewRate,
• otherwise, dy/dt = thr.

A smaller time constant Td >0 means a higher accuracy for the derivative approximation.

Note that when the input switches to false, the output y can have a discontinuity.

7.5.70.1 CDL.Reals.Ramp

Symbol

Parameters

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

117

Data Type Name Default Description

Real fallingSlewRate -raisingSlewRate Maximum speed with which to
decrease the output [1/s]

Real raisingSlewRate Maximum speed with which to in-
crease the output [1/s]

Real Td raisingSlewRate*0.001 Derivative time constant

Inputs
Data Type Name Description
Boolean active Set to true to enable rate limiter
Real u Input that is being rate limited

Outpus
 Data Type Name Description
Real y Rate limited output if active is true, else out-

put is equal to input

7.5.71 Stage

Output total stages that should be enabled

Description: Block which outputs the total number of stages to be enabled.

The block compares the input u with the threshold of each stage. If the input is greater than a stage
threshold, the output is set to that stage. The block outputs the total number of stages to be enabled.

The parameter n specifies the maximum number of stages. The stage thresholds are evenly dis-
tributed, i.e., the thresholds for stages [1, 2, 3, ... , n] are [0, 1/n, 2/n, ... , (n-1)/n], plus a hystere-
sis which is by default h=0.02/n. Once the output changes, it cannot change for at least holdDu-
ration seconds.

7.5.71.1 CDL.Reals.Stage

Symbol:

Parameters
Data Types Name Default Description

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

118

Real h 0.02/n Hysteresis for comparing input with
threshold

Real holdDuration Minimum time that the output needs to be
held constant. Set to 0 to disable hold time
[s]

Integer n Number of stages that could be enabled

Integer pre_y_start 0 Value of pre(y) at initial time

Inputs
Data Type Name Description
Real u Input between 0 and 1 for specifying stages

Outputs
Data Type Name Description
Integer y Total number of stages that should be enabled

7.5.72 BooleanToInteger

Converts a boolean to an integer signal

Description: Block that outputs the Integer equivalent of the Boolean input.
 y = if u then integerTrue else integerFalse;
 where u is of Boolean and y of Integer type, and integerTrue and integerFalse are parameters.

7.5.72.1 CDL.Conversions.BooleanToInteger

Symbol:

Parameters
Data Type Name Default Description
Integer integerFalse 0 Output signal for false Boolean
Integer integerTrue 1 Output signal for true Boolean

Inputs
Data Type Name Description
Boolean u Boolean to be converted to an Integer

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

119

Outputs
Data Type Name Description
Integer y Converted input as an Integer

7.5.73 BooleanToReal

Converts a boolean to a real

Description: Block which outputs the Real equivalent of the Boolean input.
 y = if u then realTrue else realFalse;
 where u is of Boolean and y of Real type, and realTrue and realFalse are parameters.

7.5.73.1 CDL.Conversions.BooleanToReal

Symbol:

Parameters
Data Type Name Default Description
Real realFalse 0 Output for false Boolean Input
Real realTrue 1 Output for true Boolean Input

Inputs
Data Type Name Description
Boolean u Boolean to be converted to a Real

Outputs
Data Type Name Description
Real y Converted input as a Real

7.5.74 IntegerToReal

Converts an integer to a real signal

Description: Block that outputs the Real equivalent of the Integer input.
 y = u;
 where u is of Integer and y of Real type.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

120

7.5.74.1 CDL.Conversions.IntegerToReal

Symbol:

Parameters
N/A

Inputs
Data Type Name Description
Integer u Integer to be converted to a Real

Outputs

Data Type Name Description
Real y Converted input as a Real

7.5.75 RealToInteger

Converts a real to an integer signal

Description Block that outputs y as the nearest integer value of the input u.
 The block outputs
 y = integer(floor(u + 0.5)) if u > 0, y = integer(ceil (u -
0.5)) otherwise.

7.5.75.1 CDL.Conversions.RealToInteger

Symbol:

Parameters
N/A

Inputs
Data Type Name Description

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

121

Real u Real to be converted to an Integer

Outputs
Data Type Name Description
Integer y Converted input as an Integer

7.5.76 Timer

Timer measuring the time from the time instant where the Boolean input became true

Description: If the Boolean input u is true, the output y is the time that has elapsed since u be-
came true. Otherwise, y is 0. If the output y becomes greater than the threshold time t, the output
passed is true. Otherwise it is false.
 In the limiting case where the timer value reaches the threshold t and the input u becomes false
simultaneously, the output passed remains false.

7.5.76.1 CDL.Logical.Timer

Symbol:

Parameters

Data Type Name Default Description

Real t 0 Threshold time for comparison [s]

Inputs
Data Type Name Description
Boolean u Input that switches timer on if true, and off if

false

Outputs
Data Type Name Description
Boolean passed Output with true if the elapsed time is greater

than threshold
Real y Elapsed time in seconds

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

122

7.5.77 TimerAccumulating

Accumulating timer that can be reset

Description: Timer that accumulates time until it is reset by an input signal.
If the Boolean input u is true, the output y is the time that has elapsed while u has been true since
the last time reset became true. If u is false, the output y holds its value. If the output y becomes
greater than the threshold time t, the output passed is true. Otherwise, it is false.
 When reset becomes true, the timer is reset to 0.
 In the limiting case where the timer value reaches the threshold t and the input u becomes false
simultaneously, the output passed remains false.

7.5.77.1 CDL.Logical.TimerAccumulating

Symbol:

Parameters
Data Type Name Default Description

Real t 0 Threshold time for comparison [s]

Inputs
Data Type Name Description
Boolean reset Input for signal that sets timer to zero if it

switches to true
Boolean u Input that switches timer on if true, and off if

false

Outputs
Data Type Name Description
Boolean passed Output with true if the elapsed time is greater

than threshold
Real y Elapsed time [s]

7.5.78 TrueDelay

Delay a rising edge of the input, but do not delay a falling edge.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

123

Description: Block which delays a signal when it becomes true.
 A rising edge of the Boolean input u gives a delayed output. A falling edge of the input is imme-
diately given to the output. If delayOnInit = true, then a true input signal at the start time is also
delayed, otherwise, the input signal is produced immediately at the output.
 Simulation results of a typical example with a delay time of 0.1 second is shown below.

7.5.78.1 CDL.Logical.TrueDelay

Symbol:

Parameters
Data Type Name Default Description

Boolean delayOnInit false Set to true to delay initial true in-
put

Real delayTime 0 Delay time [s]

Inputs
Data Type Name Description
Boolean u Input to be delayed when it switches to true

Outputs

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

124

Data Type Name Description
Boolean y Output with delayed input after it switched to

true

7.5.79 TrueFalseHold

When logical input changes state the logical output matches the state and remains in that
state for a minimum delay parameter.

Description: Block which holds a true or false signal for at least a defined time period.
 Whenever the input u switches to true (resp. false), the output y switches and remains true for at
least the duration specified by the parameter trueHoldDuration (resp. falseHoldDuration). After
this duration has elapsed, the output will be y = u.
 This block could for example be used to disable an economizer, and not re-enable it for 10 min,
and vice versa.
 Simulation results of a typical example with trueHoldDuration = falseHoldDuration = 1000 s.

7.5.79.1 CDL.Logical.TrueFalseHold

Symbol:

Parameters
Data Type Name Default Description

Real falseHoldDura-
tion

trueHoldDuration Duration of false hold

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

125

Real trueHoldDura-
tion

N/A Duration of true hold

Inputs
Data Type Name Description
Boolean u Input that is to be delayed

Outputs

Data Type Name Description
Boolean y Output with delayed input

7.5.80 Sources.CalendarTime

Outputs the current time, day, month, and year.

Description: Outputs values related to time and date, including the current hour and minute in the
day, day of the week (1-7), and the current month and day. Note that daylight savings time is not
considered in this component.

7.5.80.1 CDL.Reals.Sources.CalendarTime

Symbol:

Parameters
Data Types Name Default Description

Enumeration zerTim Enumeration for choosing how
time 0 is selected (see Section 7.7)

Integer yearRef 2016 Year when time=0 if zerTim=cus-
tom

Advanced

Real offset 0 For calculating time in different
Time Zones

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

126

Inputs
NA

Outputs
Data Type Name Description
Integer year Year
Integer month Month of the year
Integer day Day of the month
Integer hour Hour of the day
Real minute Minute of the hour
Integer weekday Day of the week (Monday=1, Sunday=7)

Informational Note:

The data type for Minute is Real while the data types for the other outputs are Integer. This is to
allow for faster calculations during simulations.

7.5.81 Sources.CivilTime

Outputs the current system or simulation time.

Description: This block outputs the time of the model or in the case of a building automation
system, the building automation system synchronized time, and hence need to assign a value for
the output of this block. Daylight saving time shall not be considered, e.g. the block always outputs
civil time rather than daylight savings time.

If a simulation starts at t=-1, then this block outputs first t=-1, and its output is advanced at the
same rate as the simulation time.

7.5.81.1 CDL.Reals.Sources.CivilTime

Symbol:

Parameters
N/A

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

127

Inputs
NA

Outputs

Data Type Name Description
Real Y Civil Time [s]

7.5.82 Sources.Constant

Outputs a constant value.

Description: Block that outputs a constant signal y = k, where k is a valued parameter that can be
type Real, Integer, or Boolean.

7.5.82.1 CDL.Reals.Sources.Constant

Symbol:

Parameters
Data Type Name Default Description

Real k n/a Constant value

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

128

Inputs
NA

Outputs
Data Type Name Description
Real y Constant value output equal to parameter k

7.5.82.2 CDL.Integers.Sources.Constant

Symbol:

Parameters
Data Type Name Default Description

Integer k n/a Constant value

Inputs
NA

Outputs
Data Type Name Description
Integer y Constant value output equal to parameter k

7.5.82.3 CDL.Logicals.Sources.Constant

Symbol:

Parameters
Data Type Name Default Description

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

129

Boolean k n/a Constant value

Inputs
NA

Outputs
Data Type Name Description
Boolean y Constant value output equal to parameter k

7.5.83 Sources.Pulse

Outputs a pulse at a specific frequency and duration.

Description: Provides a pulse output with a specific period and width.

7.5.83.1 CDL.Reals.Sources.Pulse

Symbol:

Parameters

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

130

Data Types Name Default Description

Real amplitude 1.0, 1 Amplitude of the pulse

Real offset 0.0, 0 Offset of the output

Real period n/a Time for one period in seconds

Real shift Shift time for outputs in seconds

Real width .5 Width of period as a fraction of 1

Inputs
NA

Data Type Name Description
Real, Integer, Boolean y Pulse output

7.5.83.2 CDL.Integers.Sources.Pulse

Symbol:

Parameters
Data Types Name Default Description

Integer amplitude 1.0, 1 Amplitude of the pulse

Integer offset 0.0, 0 Offset of the output

Real period n/a Time for one period in seconds

Real shift Shift time for outputs in seconds

Real width .5 Width of period as a fraction of 1

Inputs
NA

Data Type Name Description
Integer y Pulse output

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

131

7.5.83.3 CDL.Logicals.Sources.Pulse

Symbol:

Parameters
Data Types Name Default Description

Real period n/a Time for one period in seconds

Real shift Shift time for outputs in seconds

Real width .5 Width of period as a fraction of 1

Inputs
NA

Data Type Name Description
Boolean y Pulse output

7.5.84 Sources.Ramp

Generates a ramp signal of specified height and duration.

Description: Outputs a Real value based on the parameters for height, duration, start time, and
offset.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

132

7.5.84.1 CDL.Reals.Sources.Ramp

Symbol:

Parameters
Data Type Name Default Description

Real duration n/a Duration of ramp in seconds

Real height 1 Height of ramp

Real offset 0 Offset of ramp

Real startTime 0 Output = offset for time < start
time in seconds

Inputs
NA

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

133

Outputs
Data Type Name Description
Real y Ramp output value

7.5.85 Sources.SampleTrigger

Outputs a sample trigger

Description: The Boolean output y is a trigger that is only true at sample times (defined by pa-
rameter period) and is otherwise false.

7.5.85.1 CDL.Logical.Sources.SampleTrigger

Symbol:

Parameters
Data Types Name Default Description

Real period Sample period in seconds

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

134

Real shift 0 Shift time for output in sec-
onds

Inputs
NA

Outputs
Data Type Name Description
Boolean y Output with trigger value

7.5.86 Sources.Sin

Generate a sine wave

Description: Outputs a sine wave based on the parameters for amplitude, offset, time, and start
time.

7.5.86.1 CDL.Reals.Sources.Sin

Symbol:

Parameters

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

135

Data Types Name Default Description

Real amplitude 1 Amplitude of sine wave

Real offset 0 Offset of output signal in Seconds

Real freqHz Frequency of sine wave in Hz.

Real phase 0 Phase of sine wave in Radians

Real startTime 0 Output=offset for time < start-
Time in seconds

Inputs
NA

Outputs
Data Type Name Description
Real y Sine output signal

7.5.87 Sources.TimeTable

A listing of times – used for elementary scheduling

Description: Block which outputs time table values.
The block takes as a parameter a timetable of a format:
table = [0*3600 , 0;
 6*3600, 1;
 6*3600, 0;
 18*3600, 1;
 18*3600, 1];
period = 24*3600;
where the first column of table is time and the remaining column(s) are the table values. The time
column contains Real values that are in units of seconds if timeScale = 1. The parameter time-
Scale can be used to scale the time values, for example, use timeScale = 3600 if the values in the first
column are interpreted as hours.

The values in column two and higher must be 0 or 1, otherwise, the model stops with an error.
Until a new tabulated value is set, the previous tabulated value is returned.
The table scope is repeated periodically with periodicity period.

7.5.87.1 CDL.Reals.Sources.TimeTable

Symbol:

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

136

Parameters

Data Types Name Default Description

Real period Periodicity of table in seconds

Real table[:,:] Table matrix with time as a first
table column (in seconds, unless
timeScale is not 1) and Integers in
all other columns

Real timeScale 1 Time scale – set to 60 for minutes,
3,600 for hours (in seconds)

Inputs
NA

Outputs
Data Type Name Description
Real, Integer, Boolean y Output with tabulated values

7.5.87.2 CDL.Integers.Sources.TimeTable

Symbol:

Parameters

Data Types Name Default Description

Real period Periodicity of table in seconds

Real table[:,:] Table matrix with time as a first
table column (in seconds, unless

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

137

timeScale is not 1) and Integers in
all other columns

Real timeScale 1 Time scale – set to 60 for minutes,
3,600 for hours (in seconds)

Inputs
NA

Outputs
Data Type Name Description
Integer y Output with tabulated values

7.5.87.3 CDL.Logical.Sources.TimeTable

Symbol:

Parameters

Data Types Name Default Description

Real period Periodicity of table in seconds

Real table[:,:] Table matrix with time as a first
table column (in seconds, unless
timeScale is not 1) and Integers in
all other columns

Real timeScale 1 Time scale – set to 60 for minutes,
3,600 for hours (in seconds)

Inputs
NA

Outputs
Data Type Name Description
Boolean y Output with tabulated values

7.5.88 FirstOrderHold

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

138

First order hold of a sampled data system

Description: Block that outputs the extrapolation through the values of the last two sampled input
signals.

7.5.88.1 CDL.Discrete.FirstOrderHold

Symbol:

Parameters
Data Type Name Default Description

Real samplePeriod Sample period of component [sec-
onds]

Inputs
Data Type Name Description
Real u Input to be sampled

Outputs
Data Type Name Description
Real y First order hold of input

7.5.89 Sampler

Ideal sampler of a continuous input signal

Description: Block that outputs the input, sampled at a sampling rate defined via parameter sam-
plePeriod.

7.5.89.1 CDL.Discrete.Sampler

Symbol:

Parameters

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

139

Data Type Name Default Description

Real samplePeriod Sample period of component [sec-
onds]

Inputs
Data Type Name Description
Real u Input to be sampled

Outputs
Data Type Name Description
Real y Sampled input

7.5.90 TriggeredMax

Output the maximum absolute value of an input at trigger instants.

Description Block that outputs the input whenever the trigger input is rising (i.e., trigger changes
to true). The maximum, absolute value of the input at the sampling point is provided as the output.

7.5.90.1 CDL.Discrete.TriggeredMax

Symbol:

Parameters
N/A

Inputs
Data Type Name Description
Boolean trigger Input for trigger that causes u to be sampled
Real u Input to be sampled

Outputs
Data Type Name Description
Real y Maximum of input over all trigger instants

7.5.91 TriggeredMovingMean

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

140

Triggered discrete moving mean of an input

Description: Block which outputs the triggered moving mean value of an input signal.

When the trigger signal is rising (i.e., the trigger changes to true), the block samples the input,
computes the moving mean value over the past n samples, and produces this value at its output y.

7.5.91.1 CDL.Discrete.TriggeredMovingMean

Symbol:

Parameters
Data Types Name Default Description

Integer n Number of samples over which
the input is averaged

Inputs
Data Type Name Description
Boolean trigger Input to trigger ththat causes u to be sampled
Real u Input to be sampled

Outputs

Data Type Name Description
Real y Moving mean of input over all trigger in-

stants

7.5.92 TriggeredSampler

Triggered sampling of an input

Description: Samples the input whenever the triggerinput is rising (i.e., trigger changes
from false to true) and provides the sampled input as output. Before the first sampling, the output
is equal to the initial value defined via parameter y_start.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

141

7.5.92.1 CDL.Discrete.TriggeredSampler

Symbol:

Parameters
Data Type Name Default Description

Real y_start 0 Initial value of output

Inputs
Data Type Name Description
Boolean trigger Input for trigger that causes u to be sampled
Real u Input to be sampled

Outputs
Data Type Name Description
Real y Input at the last trigger instant

7.5.93 UnitDelay

Outputs the input with a unit delay

Description: Block that outputs the input signal with a unit delay:
 1
 y = --- * u
 z
Output y is the value of input u of the previous sample instant. Before the second sample instant,
the output y is identical to parameter y_start.

7.5.93.1 CDL.Discrete.UnitDelay

Symbol:

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

142

Parameters
Data Types Name Default Description

Real samplePeriod Sample period

Real y_start 0 Initial value of output

Inputs
Data Type Name Description
Real u Input to be sampled

Outputs
Data Type Name Description
Real y Input at previous sample instant

7.5.94 ZeroOrderHold

Outputs an input with a zero-order hold

Description: Block that outputs the sampled input at sample time instants. The output is held at
the value of the last sample instant during the sample points. At initial time, the block feeds the
input directly to the output.

7.5.94.1 CDL.Discrete.ZeroOrderHold

Symbol:

Parameters
Data Types Name Default Description

Real samplePeriod Sample period

Inputs
Data Type Name Description
Real u Input to be sampled

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

143

Outputs
Data Type Name Description
Real y Zero order hold of the input

7.5.95 ExtractSignal
Extract signals from an input signal vector

Description: Extract signals from the vector-valued input signal and transfer them to the vector-
valued output signal.
This vector specifies which input signals are taken and in which order they are transferred to the
output vector. Note that the dimension of extract has to match the number of outputs and the ele-
ments of extract has to be in the range of [1, nin]. Additionally, the dimensions of the input connector
signals and the output connector signals have to be explicitly defined via the parame-
ters nin and nout.

Informational Note:

The specification
 nin = 7 "Number of inputs";
 nout = 4 "Number of outputs";
 extract[nout] = {6,3,3,2} "Extracting vector";
extracts four output signals (nout=4) from the seven elements of the input vector (nin=7):
 y[1, 2, 3, 4] = u[6, 3, 3, 2];

7.5.95.1 CDL.Routing.RealExtractSignal

Symbol:

Parameters
Data Types Name Default Description

Real extract[nout] 1:nout Extracting vector

Integer nin 1 Number of inputs

Integer nout 1 Number of outputs

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

144

Inputs
Data Type Name Description
Real u[nin] Input signals

Outputs
Data Type Name Description
Real y[nout] Signals extracted from the input vector with

the extraction scheme specified by the integer
vector

7.5.95.2 CDL.Routing.IntegerExtractSignal

Symbol:

Parameters
Data Types Name Default Description

Real extract[nout] 1:nout Extracting vector

Integer nin 1 Number of inputs

Integer nout 1 Number of outputs

Inputs
Data Type Name Description
Integer u[nin] Input signals

Outputs
Data Type Name Description
Integer y[nout] Signals extracted from the input vector with

the extraction scheme specified by the integer
vector

7.5.95.3 CDL.Routing.BooleanExtractSignal

Symbol:

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

145

Parameters
Data Types Name Default Description

Real extract[nout] 1:nout Extracting vector

Integer nin 1 Number of inputs

Integer nout 1 Number of outputs

Inputs
Data Type Name Description
Boolean u[nin] Input signals

Outputs
Data Type Name Description
Boolean y[nout] Signals extracted from the input vector with

the extraction scheme specified by the integer
vector

7.5.96 Extractor

Extract scalar signals from an input vector depending on an output index

Description: Block that returns
 y = u[index];

When the index is out of range, then y = u[nin] if index > nin, and y = u[1] if index < 1.

7.5.96.1 CDL.Routing.RealExtractor

Symbol:

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

146

Parameters
Data Type Name Default Description

Integer nin 1 Number of inputs

Inputs
Data Type Name Description
Integer index Index of input vector elements to be ex-

tracted out
Real

u[nin] Input signals to be extracted

Outputs
Data Type Name Description
Real y Signal extracted from the input vector

7.5.96.2 CDL.Routing.IntegerExtractor

Symbol:

Parameters
Data Type Name Default Description

Integer nin 1 Number of inputs

Inputs
Data Type Name Description
Integer index Index of input vector elements to be ex-

tracted out
Integer

u[nin] Input signals to be extracted

Outputs
Data Type Name Description
Integer y Signal extracted from the input vector

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

147

7.5.96.3 CDL.Routing.BooleanExtractor

Symbol:

Parameters
Data Type Name Default Description

Integer nin 1 Number of inputs

Inputs
Data Type Name Description
Integer index Index of input vector elements to be ex-

tracted out
Boolean

u[nin] Input signals to be extracted

Outputs
Data Type Name Description
Boolean y Signal extracted from the input vector

7.5.97 ScalarReplicator

 Elementary Block Names

CDL CXF
CDL.Routing.BooleanScalarReplicator CXF.Routing.BooleanScalarReplicator
CDL.Routing.IntegersScalarReplicator CXF.Routing.IntegerScalarReplicator
CDL.Routing.RealScalarReplicator CXF.Routing.RealScalarReplicator
 CXF.Routing.AnalogScalarReplicator

Scalar replicator
Description: This block replicates the input signal to an array of nout identical output signals.

7.5.97.1 CDL.Routing.RealScalarReplicator

Symbol:

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

148

Parameters
Data Types Name Default Description

Integer nout 1 Number of outputs

Inputs
Data Type Name Description
Real u Input signals to be replicated

Outputs
Data Type Name Description
Real y[nout] Output with replicated input signal

7.5.97.2 CDL.Routing.IntegerScalarReplicator

Symbol:

Parameters
Data Types Name Default Description

Integer nout 1 Number of outputs

Inputs
Data Type Name Description
Integer u Input signals to be replicated

Outputs
Data Type Name Description
Integer y[nout] Output with replicated input signal

7.5.97.3 CDL.Routing.BooleanScalarReplicator

Symbol:

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

149

Parameters
Data Types Name Default Description

Integer nout 1 Number of outputs

Inputs
Data Type Name Description
Boolean u Input signals to be replicated

Outputs
Data Type Name Description
Boolean y[nout] Output with replicated input signal

7.5.98 VectorFilter

Filter an input vector based on a boolean mask.

Description: This block filters a vector of size nin to a vector of size nout given a Boolean mask
msk.
If an entry in msk is true, then the value of this input will be sent to the output y, otherwise, it
will be discarded.
The parameter msk must have exactly nout entries set to true, otherwise an error message shall
be issued.

7.5.98.1 CDL.Routing.RealVectorFilter

Symbol:

Parameters
Data Type Name Default Description

Boolean msk[nin] fill(true,nin) Array mask

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

150

Integer nin Size of input vector

Integer nout Size of output vector

Inputs
Data Type Name Description
Real u[nin] Input signals from which values are extracted

Outputs

Data Type Name Description
Real y[nout] Output with extracted input signals

7.5.98.2 CDL.Routing.IntegerVectorFilter

Symbol:

Parameters
Data Type Name Default Description

Boolean msk[nin] fill(true,nin) Array mask

Integer nin Size of input vector

Integer nout Size of output vector

Inputs
Data Type Name Description
Integer u[nin] Input signals from which values are extracted

Outputs

Data Type Name Description
Integer y[nout] Output with extracted input signals

7.5.98.3 CDL.Routing.BooleanVectorFilter

Symbol:

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

151

Parameters
Data Type Name Default Description

Boolean msk[nin] fill(true,nin) Array mask

Integer nin Size of input vector

Integer nout Size of output vector

Inputs
Data Type Name Description
Boolean, Integer, Real u[nin] Input signals from which values are extracted

Outputs

Data Type Name Description
Boolean, Integer, Real y[nout] Output with extracted input signals

7.5.99 VectorReplicator

Vector signal replicator

Description: This block replicates a vector input signal of size nin, to a matrix with nout rows
and nin columns, where each row is duplicating the input vector.

7.5.99.1 CDL.Routing.RealVectorReplicator

Symbol:

Parameters
Data Types Name Default Description

Integer nin 1 Size of input vector

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

152

Integer nout 1 Number of rows in output

Inputs
Data Type Name Description
Real u[nin] Vector input signals to be replicated

Outputs
Data Type Name Description
Real y[nout,nin] Output with replicated input signals

7.5.99.2 CDL.Routing.IntegerVectorReplicator

Symbol:

Parameters
Data Types Name Default Description

Integer nin 1 Size of input vector

Integer nout 1 Number of rows in output

Inputs
Data Type Name Description
Integer u[nin] Vector input signals to be replicated

Outputs
Data Type Name Description
Integer y[nout,nin] Output with replicated input signals

7.5.99.3 CDL.Routing.BooleanVectorReplicator

Symbol:

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

153

Parameters
Data Types Name Default Description

Integer nin 1 Size of input vector

Integer nout 1 Number of rows in output

Inputs
Data Type Name Description
Boolean u[nin] Vector input signals to be replicated

Outputs
Data Type Name Description
Boolean y[nout,nin] Output with replicated input signals

7.5.100 Assert

Block which writes a message when an input becomes false

Description: Tools or control systems shall write a message together with a time stamp to an
output device and/or a log file.

7.5.100.1 CDL.Utilities.Assert

Symbol:

Parameters
Data Type Name Default Description

String message Message written when u becomes
false

Inputs
Data Type Name Description
Boolean u Input that triggers the assert when its value is

false.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

154

Outputs
N/A

7.5.101SunRiseSet

Outputs the time for sunrise and sunset.

Description: Outputs the next sunrise and sunset time. The sunrise time keeps constant until the
next sunrise, at which time the output gets updated. Similarly, the output for the next sunset is
updated at each sunset.

The time zone parameter is based on UTC time. Note that Eastern Standard Time is UTC-5 hours.
This block only supports US standard time and not daylight savings time.

7.5.101.1 CDL.Utilities.SunRiseSet

Symbol:

Parameters
It has the following parameters
Data Types Name Default Description

Real lat Latitude (radians)

Real lon Longitude (radians)

Real timZon Time Zone (hours)

Inputs
NA

Outputs
Data Type Name Description
Real nextSunRise Time of next sunrise in seconds
Real nextSunSet Time of next sunset in seconds
Boolean sunUp Output True if the sun is up

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

155

7.5.102 InputConnectors

Connector with an input of a specific data type

Description: Provides an input

7.5.102.1 CDL.Interfaces.RealInput

Symbol:

7.5.102.2 CDL.Interfaces.IntegerInput

Symbol:

7.5.102.3 CDL.Interfaces.BooleanInput

Symbol:

7.5.103 OutputConnectors

Connector with one output of a specific data type

Description: Provides an output

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

156

7.5.103.1 CDL.Interfaces.RealOutput

Symbol:

7.5.103.2 CDL.Interfaces.IntegerOutput

Symbol:

7.5.103.3 CDL.Interfaces.BooleanOutput

Symbol:

7.6 Predefined constants

The standard also defines the following immutable constants in the CDL.Constants package:

 constant Real eps=1E-15
 "Biggest number such that 1.0 + eps = 1.0";
 constant Real small=1E-37
 "Smallest number such that small and -small
are representable on the machine";
 constant Real pi=2*Modelica.Math.asin(1.0)
 "Constant number pi, 3.14159265358979";

Informal note: The constants eps and small are typically used to restrict the minimum value
of parameters that need to be bigger than zero, such as a control gain, in a consistent way.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

157

7.7 Predefined enumerations

CDL also contains the following types in the package CDL.Types.

Informational note: Types are used to declare Integer-valued parameter, restrict their possible
values, and associate a human-understandable value with the parameter. For example, for a PID
controller, rather than allowing a configuration 1, 2, 3, and 4, using types allows to set the con-
figuration to P, PI, PD, or PID.

The following types are defined in CDL.Types:

 type Extrapolation = enumeration(

 HoldLastPoint

 "Hold the first/last table point outside of the table scope",

 LastTwoPoints

 "Extrapolate by using the derivative at the first/last table points outside of the table scope",

 Periodic

 "Repeat the table scope periodically")

 "Enumeration defining the extrapolation of time table interpolation";

 type SimpleController = enumeration(

 P

 "P controller",

 PI

 "PI controller",

 PD

 "PD controller",

 PID

 "PID controller")

 "Enumeration defining P, PI, PD, or PID simple controller type";

 type Smoothness = enumeration(

 LinearSegments

 "Table points are linearly interpolated",

 ConstantSegments

 "Table points are not interpolated, but the previous tabulated value is returned")

 "Enumeration defining the smoothness of table interpolation";

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

158

 type ZeroTime = enumeration(

 UnixTimeStamp "Thu, 01 Jan 1970 00:00:00 local time",

 UnixTimeStampGMT "Thu, 01 Jan 1970 00:00:00 GMT",

 Custom "User specified local time",

 NY2010 "New year 2010, 00:00:00 local time",

 NY2011 "New year 2011, 00:00:00 local time",

 NY2012 "New year 2012, 00:00:00 local time",

 NY2013 "New year 2013, 00:00:00 local time",

 NY2014 "New year 2014, 00:00:00 local time",

 NY2015 "New year 2015, 00:00:00 local time",

 NY2016 "New year 2016, 00:00:00 local time",

 NY2017 "New year 2017, 00:00:00 local time",

 NY2018 "New year 2018, 00:00:00 local time",

 NY2019 "New year 2019, 00:00:00 local time",

 NY2020 "New year 2020, 00:00:00 local time",

 NY2021 "New year 2021, 00:00:00 local time",

 NY2022 "New year 2022, 00:00:00 local time",

 NY2023 "New year 2023, 00:00:00 local time",

 NY2024 "New year 2024, 00:00:00 local time",

 NY2025 "New year 2025, 00:00:00 local time",

 NY2026 "New year 2026, 00:00:00 local time",

 NY2027 "New year 2027, 00:00:00 local time",

 NY2028 "New year 2028, 00:00:00 local time",

 NY2029 "New year 2029, 00:00:00 local time",

 NY2030 "New year 2030, 00:00:00 local time",

 NY2031 "New year 2031, 00:00:00 local time",

 NY2032 "New year 2032, 00:00:00 local time",

 NY2033 "New year 2033, 00:00:00 local time",

 NY2034 "New year 2034, 00:00:00 local time",

 NY2035 "New year 2035, 00:00:00 local time",

 NY2036 "New year 2036, 00:00:00 local time",

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

159

 NY2037 "New year 2037, 00:00:00 local time",

 NY2038 "New year 2038, 00:00:00 local time",

 NY2039 "New year 2039, 00:00:00 local time",

 NY2040 "New year 2040, 00:00:00 local time",

 NY2041 "New year 2041, 00:00:00 local time",

 NY2042 "New year 2042, 00:00:00 local time",

 NY2043 "New year 2043, 00:00:00 local time",

 NY2044 "New year 2044, 00:00:00 local time",

 NY2045 "New year 2045, 00:00:00 local time",

 NY2046 "New year 2046, 00:00:00 local time",

 NY2047 "New year 2047, 00:00:00 local time",

 NY2048 "New year 2048, 00:00:00 local time",

 NY2049 "New year 2049, 00:00:00 local time",

 NY2050 "New year 2050, 00:00:00 local time")

 "Use this to set the date corresponding to time = 0 in CDL.Reals.Sources.CalendarTime";

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

160

8 APPENDICES

(The appendices are not part of this standard. It is merely informative and does
not contain requirements necessary for conformance to the standard. It has not
been processed according to the ANSI requirements for a standard and may con-
tain material that has not been subject to public review or a consensus process.
Unresolved objectors on informative material are not offered the right to appeal at
ASHRAE or ANSI.)

8.1 – Overview of Standard

8.1.1 Document Structure
This document defines a Controls Description Language which is intended to allow for designers,
modelers, control contractors and integrators, commissioning agents, and owners to have a stand-
ard methodology for describing and sharing the building control system logic. The focus is on the
specific logic that is programmed into the control system. Examples of this logic would include
the control sequence of an air handler, or the coordination needed to properly reset the pump static
pressure in the chiller plant included in ASHRAE Guideline 36. It is important to note that most
commercially available control systems also contain other logic and processing, which while it
could be documented using this standard, is not specifically covered in this standard.

Specific items covered in this standard include:

• The definition of the Controls Description Language (CDL) and the Controls Exchange
Format (CXF), including the syntax which allows for composing and documenting control
logic.

• Definitions for Elementary Functions and Elementary Blocks, as well as composite and
extension blocks.

These allow for the following:

• Ability to define a library of sequences which can be applied based on the selected options
for a project to define an instance of a sequence.

• Models created in CDL can be used with Modelica tools to test the logic. Closed loop
control simulations can also be performed using a Modelica model of the HVAC system.

• Converting (or translating) from CDL to CXF.
• The import of CDL and CXF into tools used to define programming for control systems.
• The movement of control logic from one control system to another.
• The conversion (or translation) from CXF back to CDL – noting there may be some man-

ual decision-making required.

The following functions are not covered or included in this standard and may be covered in other
ASHRAE documents or by proprietary methods:

• Network communications.

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

161

• Alarm and event processing and notification.
• Time of day scheduling and calendars.
• Trending and reporting.
• Fault detection diagnostics and analytics (unless the rules are part of the control logic).
• Preprocessing of input signals to digital conversion, and scaling.
• Post processing of logical outputs and connection to actuators.
• Other control logic not documented in CDL or CXF

Figure 8-1: Diagram represents functions in a typical commercially available HVAC controller.
The control logic shown in the bottom box is covered in this standard. All other logic is defined
by the control system provider – and could use CDL.

The document starts with sections that define the tile, purpose, and scope followed by Sections 5,
6, and 7 which contain the primary technical content. Sections 5 and 6 define the language that is
used to describe the inputs, outputs, connectors, and Elementary Blocks, and how to compose
control logic using Composite Blocks. These are referred to as the CDL and the CXF. Section 7
defines the Elementary Blocks which are represented in CDL and CXF and define the low-level
mathematical operations such as adding two inputs of a block and producing at its output the sum
of these inputs.

CDL:
The CDL format is intended to be used during the process of designing a control system which
includes defining the control logic and then testing performance in whole building simulation.

Hardware
Inputs

Hardware
Outputs

Network Communications
(BACnet, others)

Pre
Processing

Post
Processing

System Functions (alarm-
ing, scheduling, etc.) as
well as any proprietary

logic

Control Logic
Represented in
CDL/CXF

Typical HVAC Controller

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

162

CDL is defined using an open standard modeling language called Modelica7. CDL files can readily
be used with various applications that support Modelica to allow the control logic to be verified
and tested. CDL also can be used as part of an energy modeling simulation (or co-simulation to
evaluate the energy performance of a sequence with a specific model). For example, energy sim-
ulation using CDL is being supported by the United States Department of Energy’s Modelica
Buildings Library and Spawn of EnergyPlus.8

CXF:
The CXF format is intended to be used primarily in the deployment of control logic as part of the
delivery of a control system. The CXF file is defined using an internet standard (ECMA-404)
called Java Script Object Notation (JSON).9 The intent of the CXF file is that it will be supported
by control suppliers for use by controls contractors and integrators as a format to import or export
control logic. This means that tools that are used to visualize, edit, error check, upload, and down-
load control logic would be compatible with this standard. There are several potential uses for
CXF. These include:

• Import from Design: The US Department of Energy has developed libraries of control
sequences in CDL. This includes sequences from ASHRAE Guideline 36 as well as other
high-performance sequences. These sequences can be machine translated from CDL to
CXF and be provided to the controls contractor or integrator as a representation of the
desired control logic.

• Export from a Control System: Existing control logic may be stored in the CXF format.
Once it is in this interoperable format it can be readily used for import into another control
system, or it can also be machine translated into the CDL format and used for simulations,
modeling, and the development of ongoing modeling and comparison tools.

Elementary Blocks:
To define a control description language, there are several elements needed. The most basic ele-
ment is called an “Elementary Block.” Elementary Blocks range from basic math (add, equal,
absolute value) to logic (if then, else), to special and control functions (sunrise / sunset, PID). To
use elementary blocks, one instantiates these blocks, assigns their parameters (such as a propor-
tional gain), and connects their inputs and outputs. CDL and CXF both contain elementary blocks
that provide the same mathematical functionality, thereby allowing translation from CDL to CXF.
See Section 7.3 for more details.

“Composite Blocks” are a collection of any number of Elementary Blocks and other Composite
Blocks. Composite Block can declare parameters (such as for the sampling time that may be used
by two blocks inside this Composite Block), Connectors for inputs and outputs, and how these
Connectors are connected.

Elementary Blocks have a defined set of inputs and outputs, as well as adjustable or configurable
parameters. Specific logic, which is defined mathematically, occurs within each block. For exam-
ple, a block could be used to add the values from two inputs and output the result. Note that both

7 https://modelica.org
8 https://www.energy.gov/eere/buildings/downloads/spawn-energyplus-spawn
9 https://www.json.org/json-en.html

https://modelica.org/
https://www.energy.gov/eere/buildings/downloads/spawn-energyplus-spawn
https://www.json.org/json-en.html

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

163

CDL and CXF use the same elementary functions, and the two representations contain essentially
the same information but are intended to be used by different applications.

To define a control logic, instances of Elementary Blocks are connected to each other or to in-
stances of Composite Blocks, so that the output of one block becomes the input of another block.
Logic can be viewed visually as a series of blocks with connecting lines showing these relation-
ships. The graphical representation can also be defined in a machine-readable file, which includes
the definitions for all the blocks and how they are connected.

System Functions Outside of CDL:
Commercially available control systems often include support for various “system” functions. Ex-
amples of this include scheduling, alarm processing, trending, communications processing, and
processing to support connected I/O. See Figure A-1.

At a minimum, this standard requires that vendors shall be able to readily interchange data from
their system functions to and from the logic contained in CDL. A CDL sequence will have a series
of inputs and outputs that provide this connection. The definition of how this information is con-
nected and the tools to support this connection are up to the vendor and are not defined in this
standard.

Extension Blocks:
While this standard defines a specific set of Elementary Blocks, there will be cases in which a new
block is required that cannot be specified using a Composite Block (for example, because it re-
quires execution of advanced mathematics that is beyond this standard). These new blocks are
referred to in this document as extension blocks and are defined in Section 5.

Proprietary Control Logic:
The purpose of this standard is to encourage the open sharing of control logic. This can readily be
done with the use of Elementary, Composite, and Extension blocks. But it is also recognized that
there are cases in which a vendor may not elect to share logic in an open and interoperable manner.
There are two methods to keep control logic as proprietary. The first is to utilize an Extension
block which documents all required inputs, outputs, and parameters, but the logic would not be
documented. The second approach is to hold the proprietary logic as part of the “System Func-
tions” of the controller.

8.1.2 Control Sequence Libraries and Instances
When a designer selects HVAC equipment for a project, they will typically select the options that
are needed for the project, from a list of potential options available from suppliers. As an example,
consider a multi-zone air handler. The designer will typically make selections for how the unit
will deal with outdoor air, the location and types of coils, the fan configuration, etc. What is finally
specified and shown in the project schedule is the specific configuration (or instance) of each air
handler required for a specific project. So, the designer started with a library of all options for air
handlers, and selected the specific instance required for the project.

The same concept can be used for control design – see Figure 8.1. CDL can have a library of
potential control options and based on a series of decisions, there can be a specific instance of a
control sequence which is useable for the specific equipment options selected. The use of libraries

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

164

offers several benefits, including the ability to reuse code and assure consistency. To support
libraries, CDL includes support for functionalities such as matrixes, vectors, and the assignment
of parameter values using functions. Many control systems do not support these functions since
they only deal with specific instances of control sequences.

Figure 8-2 Control Sequence Libraries and Instances

8.1.3 Conformance Classes
General: Conformance classes identify groupings of functionalities. During the development and
subsequent testing and validation of an application or tool, developers must determine which com-
bination of classes to support.

Conformance Class: Conformance classes are designated as “1” and “2.” Class 1 includes the
functionality required for the application of a control sequence in tools intended to edit, test, and
apply sequences into controllers. The functions do not include those specifically needed for sup-
port of libraries and simulation, such as vectors and matrixes. Class 2 includes all the functionality
included in Class 1 plus those additional functionalities required for libraries and simulation.

Data Type Support: The conformance class also includes a second factor which is used to desig-
nate support for either “strict data types” (i.e., only Real or Integer) or “flexible data types” which
allows grouping Integer and Real data type as “Analog” type. The designation “A” is used for
strict data type, and the designation “B” is used for flexible data type.

Examples:

o Tools for Sequence Design – Conformance Class 2A: A tool that supports Model-
ica, which is being used to develop and support libraries of sequences would need
to comply with Class 2 and would have to support Data Type A

o Tool for Applying Sequences – Conformance Class 1A or 1B: This could be a tool
provided by a control provider which is used to import, export, edit, or define a

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

165

sequence. This tool also may have functionality to compile and download se-
quences into controllers. Since this tool is primarily dealing with instance and not
libraries, it suffices to be type 1. If the target platform used strict data types, it
would be type A, and if it uses Analog type, it would be type B. Note that these
tools can also conform to other classes such as 2A or 2B.

8.2 – Associated Work

This standard is connected to a series of tools and other efforts being developed as open-source
projects by the US Department of Energy. These tools are intended to comply with this standard
and made available for use by industry. See the Appendix B for details. These include:

• Library of sequences in CDL that can be used or extended and modified by users.
• Tools to assist HVAC system designers in selecting a sequence from the library.
• Tools for using CDL as part of energy models.
• Tools to verify that an installed control system produces the same control response as the

CDL specification.
• Tools to assist control suppliers in translating CXF to their native formats.

8.2.1 Sample CDL sequences

There is a library of sample sequences in CDL available from LBL. These include many of the
sequences from ASHRAE Guideline 36 as well as other content. See https://simulationre-
search.lbl.gov/modelica/releases/v12.1.0/help/Buildings_Controls_OBC_ASHRAE.html

8.2.2 Translating from CDL to CXF
Evaluation of Assignment of Values to Parameters

The assignments of values to parameters can optionally be evaluated by a CDL translator. While
such an evaluation is not preferred, it is allowed in CDL to accommodate the situation that most
building control product lines, in contrast to modeling tools such as Modelica, Simulink, or Lab-
VIEW, do not support the propagation of parameters, nor do they support the use of expressions
in parameter assignments.

Consider the statement
parameter Real pRel(unit="Pa") = 50 "Pressure difference across damper";

CDL.Continuous.Sources.Constant con(
 k = pRel) "Block producing constant output";
CDL.Logical.Hysteresis hys(
 uLow = pRel-25,
 uHigh = pRel+25) "Hysteresis for fan control";

https://simulationresearch.lbl.gov/modelica/releases/v12.1.0/help/Buildings_Controls_OBC_ASHRAE.html
https://simulationresearch.lbl.gov/modelica/releases/v12.1.0/help/Buildings_Controls_OBC_ASHRAE.html

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

166

Some building control product lines will need to evaluate this at translation because they cannot
propagate parameters and/or cannot evaluate expressions.
To lower the barrier for the development of a CDL translator to a control product line, the model-
ica-json translator has two flags. One flag, called evaluatePropagatedParameters, will cause the
translator to evaluate the propagated parameter, leading to a CDL-JSON declaration that is equiv-
alent to the declaration
CDL.Continuous.Sources.Constant con(
 k(unit="Pa") = 50) "Block producing constant output";
CDL.Logical.Hysteresis hys(
 uLow = 50-25,
 uHigh = 50+25) "Hysteresis for fan control";

Note

1. The parameter Real pRel(unit="Pa") = 50 has been removed as it is no longer used any-
where.

2. The parameter con.k now has the unit attribute set as this information would otherwise be
lost.

3. The parameter hys.uLow has the unit not set because the assignment involves an expres-
sion. As expressions can be used to convert a value to a different unit, the unit will not be
propagated if the assignment involves an expression.

Another flag called evaluateExpressions will cause all mathematical expressions to be evaluated,
leading to a CDL-JSON declaration that is equivalent to the CDL declaration
parameter Real pRel(unit="Pa") = 50 "Pressure difference across damper";

CDL.Continuous.Sources.Constant con(
 k = pRel) "Block producing constant output";
CDL.Logical.Hysteresis hys(
 uLow = 25,
 uHigh = 75) "Hysteresis for fan control";
If both evaluatePropagatedParameters and evaluateExpressions are set, the result would be equiv-
alent of the declaration
CDL.Continuous.Sources.Constant con(
 k(unit="Pa") = 50) "Block producing constant output";
CDL.Logical.Hysteresis hys(
 uLow = 25,
 uHigh = 75) "Hysteresis for fan control";
Clearly, use of these flags is not preferred, but they have been introduced to accomodate the capa-
bilities that are present in most of today's building control product lines.
[Note
A commonly used construct in control sequences is to declare a parameter and then use the param-
eter once to assign the value of a block in these sequences. In CDL, this construct looks like pa-
rameter Real pRel(unit="Pa") = 50 "Pressure difference across damper";
CDL.Continuous.Sources.Constant con(k = pRel) "Block producing constant output";
Note that the English language sequence description would typically refer to the parameter pRel.
If this is evaluated during translation due to the evaluatePropagatedParameters flag, then pRel
would be removed as it is no longer used. Hence, such a translation should then rename the block
con to pRel, e.g., it should produce a sequence that is equivalent to the CDL declaration

BSR/ASHRAE Standard 231P, A Control Description Language for Building Environmental Control
Sequences
Second Public Review Draft

167

CDL.Continuous.Sources.Constant pRel(k = 50) "Block producing constant output";
In this way, references in the English language sequence to pRel are still valid.
]

8.2.3 Digital Documentation of CDL

The definition of CDL found in this standard is also available in a digital code repository. See
https://simulationresearch.lbl.gov/modelica/releases/v12.1.0/help/Buildings_Con-
trols_OBC_CDL.html for details.

https://simulationresearch.lbl.gov/modelica/releases/v12.1.0/help/Buildings_Controls_OBC_CDL.html
https://simulationresearch.lbl.gov/modelica/releases/v12.1.0/help/Buildings_Controls_OBC_CDL.html

	1 Purpose
	2 Scope
	3 DEFINITIONS
	3.1 Definitions

	4 How to use this document
	5 CONTROL DESCRIPTION LANGUAGE
	5.1 Basic Elements of CDL
	5.2 Syntax
	5.3 Units
	5.4 Permissible Data Types
	5.4.1 Data Types
	5.4.1.1 Real Type
	5.4.1.2 Integer Type
	5.4.1.3 Boolean Type
	5.4.1.4 String Type
	5.4.1.5 Enumeration Type

	5.4.2 Parameter and Constant Declarations
	5.4.3 Arrays

	5.5 Encapsulation of Functionality
	5.6 Elementary Blocks
	5.7 Connectors
	5.8 Composite Blocks
	5.8.1 Implementation of Composite Blocks
	5.8.2 Equations
	5.8.3 Assigning of Values to Parameters
	5.8.4 Conditionally Removing Instances
	5.8.5 Points lists
	5.8.5.1 Annotations that Cause Point Lists to be Generated
	5.8.5.2 Annotations for Connectors
	5.8.5.3 Control point properties

	5.8.6 Connections
	5.8.7 Annotations

	5.9 Extension Blocks
	5.10 Replaceable Blocks
	5.11 Extension of a Composite Block
	5.12 Model of Computation
	5.13 Metadata
	5.13.1 Inferred Properties
	5.13.2 Semantic Information

	6 Control Exchange Format (CXF)
	7 Elementary Blocks
	7.1 Introduction
	7.2 Specifying Elementary Blocks
	7.3 Symbols
	7.4 Elementary Blocks
	7.5 Elementary Block Descriptions
	7.5.1 Abs
	7.5.1.1 CDL.Reals.Abs
	7.5.1.2 CDL.Integers.Abs

	7.5.2 Add
	7.5.2.1 CDL.Reals.Add
	7.5.2.2 CDL.Integers.Add

	7.5.3 AddParameter
	7.5.3.1 CDL.Reals.AddParameter
	7.5.3.2 CDL.Integers.AddParameter

	7.5.4 Acos
	7.5.4.1 CDL.Reals.Acos

	7.5.5 Asin
	7.5.5.1 CDL.Reals.Asin

	7.5.6 Atan
	7.5.6.1 CDL.Reals.Atan

	7.5.7 Atan2
	7.5.7.1 CDL.Reals.Atan2

	7.5.8 Average
	7.5.8.1 CDL.Reals.Average

	7.5.9 Cos
	7.5.9.1 CDL.Reals.Cos

	7.5.10 Derivative
	7.5.10.1 CDL.Reals.Derivative

	7.5.11 Divide
	7.5.11.1 CDL.Reals.Divide

	7.5.12 Exp
	7.5.12.1 CDL.Reals.Exp

	7.5.13 IntegratorWithReset
	7.5.13.1 CDL.Reals.IntegratorWithReset

	7.5.14 LimitSlewRate
	7.5.14.1 CDL.Reals.LimitSlewRate

	7.5.15 Line
	7.5.15.1 CDL.Reals.Line

	7.5.16 Log
	7.5.16.1 CDL.Reals.Log

	7.5.17 Log10
	7.5.17.1 CDL.Reals.Log10

	7.5.18 MatrixGain
	7.5.18.1 CDL.Reals.MatrixGain

	7.5.19 MatrixMax
	7.5.19.1 CDL.Reals.MatrixMax

	7.5.20 MatrixMin
	7.5.20.1 CDL.Reals.MatrixMin

	7.5.21 Max
	7.5.21.1 CDL.Reals.Max
	7.5.21.2 CDL.Integers.Max

	7.5.22 Min
	7.5.22.1 CDL.Reals.Min
	7.5.22.2 CDL.Integers.Min

	7.5.23 Modulo
	7.5.23.1 CDL.Reals.Modulo

	7.5.24 MovingAverage
	7.5.24.1 CDL.Reals.MovingAverage

	7.5.25 MultiMax
	7.5.25.1 CDL.Reals.MultiMax

	7.5.26 MultiMin
	7.5.26.1 CDL.Reals.MultiMin

	7.5.27 Multiply
	7.5.27.1 CDL.Reals.Multiply
	7.5.27.2 CDL.Integers.Multiply

	7.5.28 MultiplyByParameter
	7.5.28.1 CDL.Reals.MultiplyByParameter

	7.5.29 MultiSum
	7.5.29.1 CDL.Reals.Multisum
	7.5.29.2 CDL.Integers.Multisum

	7.5.30 PID
	7.5.30.1 CDL.Reals.PID

	7.5.31 PIDWithReset
	7.5.31.1 CDL.Reals.PIDWithReset

	7.5.32 Round
	7.5.32.1 CDL.Reals.Round

	7.5.33 Sin
	7.5.33.1 CDL.Reals.Sin

	7.5.34 Sort
	7.5.34.1 CDL.Reals.Sort

	7.5.35 Sqrt
	7.5.35.1 CDL.Reals.Sqrt

	7.5.36 Subtract
	7.5.36.1 CDL.Reals.Subtract
	7.5.36.2 CDL.Integers.Subtract

	7.5.37 Tan
	7.5.37.1 CDL.Reals.Tan

	7.5.38 And
	7.5.38.1 CDL.Logical.And

	7.5.39 Change
	7.5.39.1 CDL.Logical.Change
	7.5.39.2 CDL.Integer.Change

	7.5.40 Edge
	7.5.40.1 CDL.Logical.Edge

	7.5.41 FallingEdge
	7.5.41.1 CDL.Logical.FallingEdge

	7.5.42 Latch
	7.5.42.1 CDL.Logical.Latch

	7.5.43 MultiAnd
	7.5.43.1 CDL.Logical.MultiAnd

	7.5.44 MultiOr
	7.5.44.1 CDL.Logical.MultiOr

	7.5.45 Nand
	7.5.45.1 CDL.Logical.Nand

	7.5.46 Nor
	7.5.46.1 CDL.Logical.Nor

	7.5.47 Not
	7.5.47.1 CDL.Logical.Not

	7.5.48 Or
	7.5.48.1 CDL.Logical.Or

	7.5.49 Proof
	7.5.49.1 CDL.Logical.Proof

	7.5.50 Switch
	7.5.50.1 CDL.Reals.Switch
	7.5.50.2 CDL.Integers.Switch
	7.5.50.3 CDL.Logical.Switch

	7.5.51 Toggle
	7.5.51.1 CDL.Logical.Toggle

	7.5.52 VariablePulse
	7.5.52.1 CDL.Logical.VariablePulse

	7.5.53 Xor
	7.5.53.1 CDL.Logical.Xor

	7.5.54 DewPoint_TDryBulPhi
	7.5.54.1 CDL.Psychrometrics.DewPoint_TDryBulPhi

	7.5.55 SpecificEnthalpy_TDryBulPhi
	7.5.55.1 CDL.Psychrometrics.SpecificEnthalpy_TDryBulPhi

	7.5.56 WetBulb_TDryBulPhi
	7.5.56.1 CDL.Psychrometrics.WetBulb_TDryBulPhi

	7.5.57 Equal
	7.5.57.1 CDL.Integers.Equal

	7.5.58 Greater
	7.5.58.1 CDL.Reals.Greater
	7.5.58.2 CDL.Integers.Greater

	7.5.59 GreaterEqual
	7.5.59.1 CDL.Integers.GreaterEqual

	7.5.60 GreaterEqualThreshold
	7.5.60.1 CDL.Integers.GreaterEqualThreshold

	7.5.61 GreaterThreshold
	7.5.61.1 CDL.Reals.GreaterThreshold
	7.5.61.2 CDL.Integers.GreaterThreshold

	7.5.62 Hysteresis
	7.5.62.1 CDL.Reals.Hysteresis

	7.5.63 Less
	7.5.63.1 CDL.Reals.Less
	7.5.63.2 CDL.Integers.Less

	7.5.64 LessEqual
	7.5.64.1 CDL.Integers.LessEqual

	7.5.65 LessEqualThreshold
	7.5.65.1 CDL.Integers.LessEqualThreshold

	7.5.66 LessThreshold
	7.5.66.1 CDL.Reals.LessEqualThreshold
	7.5.66.2 CDL.Integers.LessEqualThreshold

	7.5.67 Limiter
	7.5.67.1 CDL.Reals.Limiter

	7.5.68 OnCounter
	7.5.68.1 CDL.Integers.OnCounter

	7.5.69 Pre
	7.5.69.1 CDL.Logical.Pre

	7.5.70 Ramp
	7.5.70.1 CDL.Reals.Ramp

	7.5.71 Stage
	7.5.71.1 CDL.Reals.Stage

	7.5.72 BooleanToInteger
	7.5.72.1 CDL.Conversions.BooleanToInteger

	7.5.73 BooleanToReal
	7.5.73.1 CDL.Conversions.BooleanToReal

	7.5.74 IntegerToReal
	7.5.74.1 CDL.Conversions.IntegerToReal

	7.5.75 RealToInteger
	7.5.75.1 CDL.Conversions.RealToInteger

	7.5.76 Timer
	7.5.76.1 CDL.Logical.Timer

	7.5.77 TimerAccumulating
	7.5.77.1 CDL.Logical.TimerAccumulating

	7.5.78 TrueDelay
	7.5.78.1 CDL.Logical.TrueDelay

	7.5.79 TrueFalseHold
	7.5.79.1 CDL.Logical.TrueFalseHold

	7.5.80 Sources.CalendarTime
	7.5.80.1 CDL.Reals.Sources.CalendarTime

	7.5.81 Sources.CivilTime
	7.5.81.1 CDL.Reals.Sources.CivilTime

	7.5.82 Sources.Constant
	7.5.82.1 CDL.Reals.Sources.Constant
	7.5.82.2 CDL.Integers.Sources.Constant
	7.5.82.3 CDL.Logicals.Sources.Constant

	7.5.83 Sources.Pulse
	7.5.83.1 CDL.Reals.Sources.Pulse
	7.5.83.2 CDL.Integers.Sources.Pulse
	7.5.83.3 CDL.Logicals.Sources.Pulse

	7.5.84 Sources.Ramp
	7.5.84.1 CDL.Reals.Sources.Ramp

	7.5.85 Sources.SampleTrigger
	7.5.85.1 CDL.Logical.Sources.SampleTrigger

	7.5.86 Sources.Sin
	7.5.86.1 CDL.Reals.Sources.Sin

	7.5.87 Sources.TimeTable
	7.5.87.1 CDL.Reals.Sources.TimeTable
	7.5.87.2 CDL.Integers.Sources.TimeTable
	7.5.87.3 CDL.Logical.Sources.TimeTable

	7.5.88 FirstOrderHold
	7.5.88.1 CDL.Discrete.FirstOrderHold

	7.5.89 Sampler
	7.5.89.1 CDL.Discrete.Sampler

	7.5.90 TriggeredMax
	7.5.90.1 CDL.Discrete.TriggeredMax

	7.5.91 TriggeredMovingMean
	7.5.91.1 CDL.Discrete.TriggeredMovingMean

	7.5.92 TriggeredSampler
	7.5.92.1 CDL.Discrete.TriggeredSampler

	7.5.93 UnitDelay
	7.5.93.1 CDL.Discrete.UnitDelay

	7.5.94 ZeroOrderHold
	7.5.94.1 CDL.Discrete.ZeroOrderHold

	7.5.95 ExtractSignal
	7.5.95.1 CDL.Routing.RealExtractSignal
	7.5.95.2 CDL.Routing.IntegerExtractSignal
	7.5.95.3 CDL.Routing.BooleanExtractSignal

	7.5.96 Extractor
	7.5.96.1 CDL.Routing.RealExtractor
	7.5.96.2 CDL.Routing.IntegerExtractor
	7.5.96.3 CDL.Routing.BooleanExtractor

	7.5.97 ScalarReplicator
	7.5.97.1 CDL.Routing.RealScalarReplicator
	7.5.97.2 CDL.Routing.IntegerScalarReplicator
	7.5.97.3 CDL.Routing.BooleanScalarReplicator

	7.5.98 VectorFilter
	7.5.98.1 CDL.Routing.RealVectorFilter
	7.5.98.2 CDL.Routing.IntegerVectorFilter
	7.5.98.3 CDL.Routing.BooleanVectorFilter

	7.5.99 VectorReplicator
	7.5.99.1 CDL.Routing.RealVectorReplicator
	7.5.99.2 CDL.Routing.IntegerVectorReplicator
	7.5.99.3 CDL.Routing.BooleanVectorReplicator

	7.5.100 Assert
	7.5.100.1 CDL.Utilities.Assert

	7.5.101 SunRiseSet
	7.5.101.1 CDL.Utilities.SunRiseSet

	7.5.102 InputConnectors
	7.5.102.1 CDL.Interfaces.RealInput
	7.5.102.2 CDL.Interfaces.IntegerInput
	7.5.102.3 CDL.Interfaces.BooleanInput

	7.5.103 OutputConnectors
	7.5.103.1 CDL.Interfaces.RealOutput
	7.5.103.2 CDL.Interfaces.IntegerOutput
	7.5.103.3 CDL.Interfaces.BooleanOutput

	7.6 Predefined constants
	7.7 Predefined enumerations

	8 APPENDICES
	8.1 – Overview of Standard
	8.1.1 Document Structure
	8.1.2 Control Sequence Libraries and Instances
	8.1.3 Conformance Classes

	8.2 – Associated Work
	8.2.1 Sample CDL sequences
	8.2.2 Translating from CDL to CXF
	8.2.3 Digital Documentation of CDL

